Metamath Proof Explorer


Theorem prodgt02

Description: Infer that a multiplier is positive from a nonnegative multiplicand and positive product. (Contributed by NM, 24-Apr-2005)

Ref Expression
Assertion prodgt02 AB0B0<AB0<A

Proof

Step Hyp Ref Expression
1 recn AA
2 recn BB
3 mulcom ABAB=BA
4 1 2 3 syl2an ABAB=BA
5 4 breq2d AB0<AB0<BA
6 5 biimpd AB0<AB0<BA
7 prodgt0 BA0B0<BA0<A
8 7 ex BA0B0<BA0<A
9 8 ancoms AB0B0<BA0<A
10 6 9 sylan2d AB0B0<AB0<A
11 10 imp AB0B0<AB0<A