Description: Infer that a multiplicand is positive from a nonnegative multiplier and positive product. (Contributed by NM, 24-Apr-2005) (Revised by Mario Carneiro, 27-May-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | prodgt0 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0red | |
|
2 | simpl | |
|
3 | 1 2 | leloed | |
4 | simpll | |
|
5 | simplr | |
|
6 | 4 5 | remulcld | |
7 | simprl | |
|
8 | 7 | gt0ne0d | |
9 | 4 8 | rereccld | |
10 | simprr | |
|
11 | recgt0 | |
|
12 | 11 | ad2ant2r | |
13 | 6 9 10 12 | mulgt0d | |
14 | 6 | recnd | |
15 | 4 | recnd | |
16 | 14 15 8 | divrecd | |
17 | simpr | |
|
18 | 17 | recnd | |
19 | 18 | adantr | |
20 | 19 15 8 | divcan3d | |
21 | 16 20 | eqtr3d | |
22 | 13 21 | breqtrd | |
23 | 22 | exp32 | |
24 | 0re | |
|
25 | 24 | ltnri | |
26 | 18 | mul02d | |
27 | 26 | breq2d | |
28 | 25 27 | mtbiri | |
29 | 28 | pm2.21d | |
30 | oveq1 | |
|
31 | 30 | breq2d | |
32 | 31 | imbi1d | |
33 | 29 32 | syl5ibcom | |
34 | 23 33 | jaod | |
35 | 3 34 | sylbid | |
36 | 35 | imp32 | |