Metamath Proof Explorer


Theorem prodgt0

Description: Infer that a multiplicand is positive from a nonnegative multiplier and positive product. (Contributed by NM, 24-Apr-2005) (Revised by Mario Carneiro, 27-May-2016)

Ref Expression
Assertion prodgt0 AB0A0<AB0<B

Proof

Step Hyp Ref Expression
1 0red AB0
2 simpl ABA
3 1 2 leloed AB0A0<A0=A
4 simpll AB0<A0<ABA
5 simplr AB0<A0<ABB
6 4 5 remulcld AB0<A0<ABAB
7 simprl AB0<A0<AB0<A
8 7 gt0ne0d AB0<A0<ABA0
9 4 8 rereccld AB0<A0<AB1A
10 simprr AB0<A0<AB0<AB
11 recgt0 A0<A0<1A
12 11 ad2ant2r AB0<A0<AB0<1A
13 6 9 10 12 mulgt0d AB0<A0<AB0<AB1A
14 6 recnd AB0<A0<ABAB
15 4 recnd AB0<A0<ABA
16 14 15 8 divrecd AB0<A0<ABABA=AB1A
17 simpr ABB
18 17 recnd ABB
19 18 adantr AB0<A0<ABB
20 19 15 8 divcan3d AB0<A0<ABABA=B
21 16 20 eqtr3d AB0<A0<ABAB1A=B
22 13 21 breqtrd AB0<A0<AB0<B
23 22 exp32 AB0<A0<AB0<B
24 0re 0
25 24 ltnri ¬0<0
26 18 mul02d AB0B=0
27 26 breq2d AB0<0B0<0
28 25 27 mtbiri AB¬0<0B
29 28 pm2.21d AB0<0B0<B
30 oveq1 0=A0B=AB
31 30 breq2d 0=A0<0B0<AB
32 31 imbi1d 0=A0<0B0<B0<AB0<B
33 29 32 syl5ibcom AB0=A0<AB0<B
34 23 33 jaod AB0<A0=A0<AB0<B
35 3 34 sylbid AB0A0<AB0<B
36 35 imp32 AB0A0<AB0<B