Metamath Proof Explorer


Theorem mulgt0d

Description: The product of two positive numbers is positive. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses ltd.1 φA
ltd.2 φB
mulgt0d.3 φ0<A
mulgt0d.4 φ0<B
Assertion mulgt0d φ0<AB

Proof

Step Hyp Ref Expression
1 ltd.1 φA
2 ltd.2 φB
3 mulgt0d.3 φ0<A
4 mulgt0d.4 φ0<B
5 mulgt0 A0<AB0<B0<AB
6 1 3 2 4 5 syl22anc φ0<AB