Metamath Proof Explorer


Theorem mulgt0d

Description: The product of two positive numbers is positive. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses ltd.1 φ A
ltd.2 φ B
mulgt0d.3 φ 0 < A
mulgt0d.4 φ 0 < B
Assertion mulgt0d φ 0 < A B

Proof

Step Hyp Ref Expression
1 ltd.1 φ A
2 ltd.2 φ B
3 mulgt0d.3 φ 0 < A
4 mulgt0d.4 φ 0 < B
5 mulgt0 A 0 < A B 0 < B 0 < A B
6 1 3 2 4 5 syl22anc φ 0 < A B