Metamath Proof Explorer


Theorem fsumdivc

Description: A finite sum divided by a constant. (Contributed by NM, 2-Jan-2006) (Revised by Mario Carneiro, 24-Apr-2014)

Ref Expression
Hypotheses fsummulc2.1 φAFin
fsummulc2.2 φC
fsummulc2.3 φkAB
fsumdivc.4 φC0
Assertion fsumdivc φkABC=kABC

Proof

Step Hyp Ref Expression
1 fsummulc2.1 φAFin
2 fsummulc2.2 φC
3 fsummulc2.3 φkAB
4 fsumdivc.4 φC0
5 2 4 reccld φ1C
6 1 5 3 fsummulc1 φkAB1C=kAB1C
7 1 3 fsumcl φkAB
8 7 2 4 divrecd φkABC=kAB1C
9 2 adantr φkAC
10 4 adantr φkAC0
11 3 9 10 divrecd φkABC=B1C
12 11 sumeq2dv φkABC=kAB1C
13 6 8 12 3eqtr4d φkABC=kABC