Metamath Proof Explorer


Theorem fsumneg

Description: Negation of a finite sum. (Contributed by Scott Fenton, 12-Jun-2013) (Revised by Mario Carneiro, 24-Apr-2014)

Ref Expression
Hypotheses fsumneg.1 φAFin
fsumneg.2 φkAB
Assertion fsumneg φkAB=kAB

Proof

Step Hyp Ref Expression
1 fsumneg.1 φAFin
2 fsumneg.2 φkAB
3 neg1cn 1
4 3 a1i φ1
5 1 4 2 fsummulc2 φ-1kAB=kA-1B
6 1 2 fsumcl φkAB
7 6 mulm1d φ-1kAB=kAB
8 2 mulm1d φkA-1B=B
9 8 sumeq2dv φkA-1B=kAB
10 5 7 9 3eqtr3rd φkAB=kAB