Metamath Proof Explorer


Theorem fsumsub

Description: Split a finite sum over a subtraction. (Contributed by Scott Fenton, 12-Jun-2013) (Revised by Mario Carneiro, 24-Apr-2014)

Ref Expression
Hypotheses fsumneg.1 φAFin
fsumneg.2 φkAB
fsumsub.3 φkAC
Assertion fsumsub φkABC=kABkAC

Proof

Step Hyp Ref Expression
1 fsumneg.1 φAFin
2 fsumneg.2 φkAB
3 fsumsub.3 φkAC
4 3 negcld φkAC
5 1 2 4 fsumadd φkAB+C=kAB+kAC
6 1 3 fsumneg φkAC=kAC
7 6 oveq2d φkAB+kAC=kAB+kAC
8 5 7 eqtrd φkAB+C=kAB+kAC
9 2 3 negsubd φkAB+C=BC
10 9 sumeq2dv φkAB+C=kABC
11 1 2 fsumcl φkAB
12 1 3 fsumcl φkAC
13 11 12 negsubd φkAB+kAC=kABkAC
14 8 10 13 3eqtr3d φkABC=kABkAC