Description: The identity function is a polynomial. (Contributed by Mario Carneiro, 17-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | plyid | ⊢ ( ( 𝑆 ⊆ ℂ ∧ 1 ∈ 𝑆 ) → Xp ∈ ( Poly ‘ 𝑆 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mptresid | ⊢ ( I ↾ ℂ ) = ( 𝑧 ∈ ℂ ↦ 𝑧 ) | |
| 2 | df-idp | ⊢ Xp = ( I ↾ ℂ ) | |
| 3 | exp1 | ⊢ ( 𝑧 ∈ ℂ → ( 𝑧 ↑ 1 ) = 𝑧 ) | |
| 4 | 3 | mpteq2ia | ⊢ ( 𝑧 ∈ ℂ ↦ ( 𝑧 ↑ 1 ) ) = ( 𝑧 ∈ ℂ ↦ 𝑧 ) |
| 5 | 1 2 4 | 3eqtr4i | ⊢ Xp = ( 𝑧 ∈ ℂ ↦ ( 𝑧 ↑ 1 ) ) |
| 6 | 1nn0 | ⊢ 1 ∈ ℕ0 | |
| 7 | plypow | ⊢ ( ( 𝑆 ⊆ ℂ ∧ 1 ∈ 𝑆 ∧ 1 ∈ ℕ0 ) → ( 𝑧 ∈ ℂ ↦ ( 𝑧 ↑ 1 ) ) ∈ ( Poly ‘ 𝑆 ) ) | |
| 8 | 6 7 | mp3an3 | ⊢ ( ( 𝑆 ⊆ ℂ ∧ 1 ∈ 𝑆 ) → ( 𝑧 ∈ ℂ ↦ ( 𝑧 ↑ 1 ) ) ∈ ( Poly ‘ 𝑆 ) ) |
| 9 | 5 8 | eqeltrid | ⊢ ( ( 𝑆 ⊆ ℂ ∧ 1 ∈ 𝑆 ) → Xp ∈ ( Poly ‘ 𝑆 ) ) |