| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							1nn | 
							⊢ 1  ∈  ℕ  | 
						
						
							| 2 | 
							
								
							 | 
							expnnval | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  1  ∈  ℕ )  →  ( 𝐴 ↑ 1 )  =  ( seq 1 (  ·  ,  ( ℕ  ×  { 𝐴 } ) ) ‘ 1 ) )  | 
						
						
							| 3 | 
							
								1 2
							 | 
							mpan2 | 
							⊢ ( 𝐴  ∈  ℂ  →  ( 𝐴 ↑ 1 )  =  ( seq 1 (  ·  ,  ( ℕ  ×  { 𝐴 } ) ) ‘ 1 ) )  | 
						
						
							| 4 | 
							
								
							 | 
							1z | 
							⊢ 1  ∈  ℤ  | 
						
						
							| 5 | 
							
								
							 | 
							seq1 | 
							⊢ ( 1  ∈  ℤ  →  ( seq 1 (  ·  ,  ( ℕ  ×  { 𝐴 } ) ) ‘ 1 )  =  ( ( ℕ  ×  { 𝐴 } ) ‘ 1 ) )  | 
						
						
							| 6 | 
							
								4 5
							 | 
							ax-mp | 
							⊢ ( seq 1 (  ·  ,  ( ℕ  ×  { 𝐴 } ) ) ‘ 1 )  =  ( ( ℕ  ×  { 𝐴 } ) ‘ 1 )  | 
						
						
							| 7 | 
							
								3 6
							 | 
							eqtrdi | 
							⊢ ( 𝐴  ∈  ℂ  →  ( 𝐴 ↑ 1 )  =  ( ( ℕ  ×  { 𝐴 } ) ‘ 1 ) )  | 
						
						
							| 8 | 
							
								
							 | 
							fvconst2g | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  1  ∈  ℕ )  →  ( ( ℕ  ×  { 𝐴 } ) ‘ 1 )  =  𝐴 )  | 
						
						
							| 9 | 
							
								1 8
							 | 
							mpan2 | 
							⊢ ( 𝐴  ∈  ℂ  →  ( ( ℕ  ×  { 𝐴 } ) ‘ 1 )  =  𝐴 )  | 
						
						
							| 10 | 
							
								7 9
							 | 
							eqtrd | 
							⊢ ( 𝐴  ∈  ℂ  →  ( 𝐴 ↑ 1 )  =  𝐴 )  |