Metamath Proof Explorer


Theorem elaa

Description: Elementhood in the set of algebraic numbers. (Contributed by Mario Carneiro, 22-Jul-2014)

Ref Expression
Assertion elaa A𝔸AfPoly0𝑝fA=0

Proof

Step Hyp Ref Expression
1 df-aa 𝔸=fPoly0𝑝f-10
2 1 eleq2i A𝔸AfPoly0𝑝f-10
3 eliun AfPoly0𝑝f-10fPoly0𝑝Af-10
4 eldifi fPoly0𝑝fPoly
5 plyf fPolyf:
6 ffn f:fFn
7 fniniseg fFnAf-10AfA=0
8 4 5 6 7 4syl fPoly0𝑝Af-10AfA=0
9 8 rexbiia fPoly0𝑝Af-10fPoly0𝑝AfA=0
10 r19.42v fPoly0𝑝AfA=0AfPoly0𝑝fA=0
11 9 10 bitri fPoly0𝑝Af-10AfPoly0𝑝fA=0
12 3 11 bitri AfPoly0𝑝f-10AfPoly0𝑝fA=0
13 2 12 bitri A𝔸AfPoly0𝑝fA=0