Step |
Hyp |
Ref |
Expression |
1 |
|
df-aa |
|- AA = U_ f e. ( ( Poly ` ZZ ) \ { 0p } ) ( `' f " { 0 } ) |
2 |
1
|
eleq2i |
|- ( A e. AA <-> A e. U_ f e. ( ( Poly ` ZZ ) \ { 0p } ) ( `' f " { 0 } ) ) |
3 |
|
eliun |
|- ( A e. U_ f e. ( ( Poly ` ZZ ) \ { 0p } ) ( `' f " { 0 } ) <-> E. f e. ( ( Poly ` ZZ ) \ { 0p } ) A e. ( `' f " { 0 } ) ) |
4 |
|
eldifi |
|- ( f e. ( ( Poly ` ZZ ) \ { 0p } ) -> f e. ( Poly ` ZZ ) ) |
5 |
|
plyf |
|- ( f e. ( Poly ` ZZ ) -> f : CC --> CC ) |
6 |
|
ffn |
|- ( f : CC --> CC -> f Fn CC ) |
7 |
|
fniniseg |
|- ( f Fn CC -> ( A e. ( `' f " { 0 } ) <-> ( A e. CC /\ ( f ` A ) = 0 ) ) ) |
8 |
4 5 6 7
|
4syl |
|- ( f e. ( ( Poly ` ZZ ) \ { 0p } ) -> ( A e. ( `' f " { 0 } ) <-> ( A e. CC /\ ( f ` A ) = 0 ) ) ) |
9 |
8
|
rexbiia |
|- ( E. f e. ( ( Poly ` ZZ ) \ { 0p } ) A e. ( `' f " { 0 } ) <-> E. f e. ( ( Poly ` ZZ ) \ { 0p } ) ( A e. CC /\ ( f ` A ) = 0 ) ) |
10 |
|
r19.42v |
|- ( E. f e. ( ( Poly ` ZZ ) \ { 0p } ) ( A e. CC /\ ( f ` A ) = 0 ) <-> ( A e. CC /\ E. f e. ( ( Poly ` ZZ ) \ { 0p } ) ( f ` A ) = 0 ) ) |
11 |
9 10
|
bitri |
|- ( E. f e. ( ( Poly ` ZZ ) \ { 0p } ) A e. ( `' f " { 0 } ) <-> ( A e. CC /\ E. f e. ( ( Poly ` ZZ ) \ { 0p } ) ( f ` A ) = 0 ) ) |
12 |
3 11
|
bitri |
|- ( A e. U_ f e. ( ( Poly ` ZZ ) \ { 0p } ) ( `' f " { 0 } ) <-> ( A e. CC /\ E. f e. ( ( Poly ` ZZ ) \ { 0p } ) ( f ` A ) = 0 ) ) |
13 |
2 12
|
bitri |
|- ( A e. AA <-> ( A e. CC /\ E. f e. ( ( Poly ` ZZ ) \ { 0p } ) ( f ` A ) = 0 ) ) |