Metamath Proof Explorer


Definition df-aa

Description: Define the set of algebraic numbers. An algebraic number is a root of a nonzero polynomial over the integers. Here we construct it as the union of all kernels (preimages of { 0 } ) of all polynomials in ( PolyZZ ) , except the zero polynomial 0p . (Contributed by Mario Carneiro, 22-Jul-2014)

Ref Expression
Assertion df-aa
|- AA = U_ f e. ( ( Poly ` ZZ ) \ { 0p } ) ( `' f " { 0 } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 caa
 |-  AA
1 vf
 |-  f
2 cply
 |-  Poly
3 cz
 |-  ZZ
4 3 2 cfv
 |-  ( Poly ` ZZ )
5 c0p
 |-  0p
6 5 csn
 |-  { 0p }
7 4 6 cdif
 |-  ( ( Poly ` ZZ ) \ { 0p } )
8 1 cv
 |-  f
9 8 ccnv
 |-  `' f
10 cc0
 |-  0
11 10 csn
 |-  { 0 }
12 9 11 cima
 |-  ( `' f " { 0 } )
13 1 7 12 ciun
 |-  U_ f e. ( ( Poly ` ZZ ) \ { 0p } ) ( `' f " { 0 } )
14 0 13 wceq
 |-  AA = U_ f e. ( ( Poly ` ZZ ) \ { 0p } ) ( `' f " { 0 } )