| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elqaa.1 |
|
| 2 |
|
elqaa.2 |
|
| 3 |
|
elqaa.3 |
|
| 4 |
|
elqaa.4 |
|
| 5 |
|
elqaa.5 |
|
| 6 |
|
elqaa.6 |
|
| 7 |
|
cnex |
|
| 8 |
7
|
a1i |
|
| 9 |
6
|
fvexi |
|
| 10 |
9
|
a1i |
|
| 11 |
|
fvexd |
|
| 12 |
|
fconstmpt |
|
| 13 |
12
|
a1i |
|
| 14 |
2
|
eldifad |
|
| 15 |
|
plyf |
|
| 16 |
14 15
|
syl |
|
| 17 |
16
|
feqmptd |
|
| 18 |
8 10 11 13 17
|
offval2 |
|
| 19 |
|
fzfid |
|
| 20 |
|
nn0uz |
|
| 21 |
|
0zd |
|
| 22 |
|
ssrab2 |
|
| 23 |
|
fveq2 |
|
| 24 |
23
|
oveq1d |
|
| 25 |
24
|
eleq1d |
|
| 26 |
25
|
rabbidv |
|
| 27 |
26
|
infeq1d |
|
| 28 |
|
ltso |
|
| 29 |
28
|
infex |
|
| 30 |
27 5 29
|
fvmpt |
|
| 31 |
30
|
adantl |
|
| 32 |
|
nnuz |
|
| 33 |
22 32
|
sseqtri |
|
| 34 |
|
0z |
|
| 35 |
|
zq |
|
| 36 |
34 35
|
ax-mp |
|
| 37 |
4
|
coef2 |
|
| 38 |
14 36 37
|
sylancl |
|
| 39 |
38
|
ffvelcdmda |
|
| 40 |
|
qmulz |
|
| 41 |
39 40
|
syl |
|
| 42 |
|
rabn0 |
|
| 43 |
41 42
|
sylibr |
|
| 44 |
|
infssuzcl |
|
| 45 |
33 43 44
|
sylancr |
|
| 46 |
31 45
|
eqeltrd |
|
| 47 |
22 46
|
sselid |
|
| 48 |
|
nnmulcl |
|
| 49 |
48
|
adantl |
|
| 50 |
20 21 47 49
|
seqf |
|
| 51 |
|
dgrcl |
|
| 52 |
14 51
|
syl |
|
| 53 |
50 52
|
ffvelcdmd |
|
| 54 |
6 53
|
eqeltrid |
|
| 55 |
54
|
nncnd |
|
| 56 |
55
|
adantr |
|
| 57 |
|
elfznn0 |
|
| 58 |
4
|
coef3 |
|
| 59 |
14 58
|
syl |
|
| 60 |
59
|
adantr |
|
| 61 |
60
|
ffvelcdmda |
|
| 62 |
|
expcl |
|
| 63 |
62
|
adantll |
|
| 64 |
61 63
|
mulcld |
|
| 65 |
57 64
|
sylan2 |
|
| 66 |
19 56 65
|
fsummulc2 |
|
| 67 |
|
eqid |
|
| 68 |
4 67
|
coeid2 |
|
| 69 |
14 68
|
sylan |
|
| 70 |
69
|
oveq2d |
|
| 71 |
56
|
adantr |
|
| 72 |
71 61 63
|
mulassd |
|
| 73 |
57 72
|
sylan2 |
|
| 74 |
73
|
sumeq2dv |
|
| 75 |
66 70 74
|
3eqtr4d |
|
| 76 |
75
|
mpteq2dva |
|
| 77 |
18 76
|
eqtrd |
|
| 78 |
|
zsscn |
|
| 79 |
78
|
a1i |
|
| 80 |
55
|
adantr |
|
| 81 |
47
|
nncnd |
|
| 82 |
47
|
nnne0d |
|
| 83 |
80 81 82
|
divcan2d |
|
| 84 |
83
|
oveq2d |
|
| 85 |
59
|
ffvelcdmda |
|
| 86 |
80 81 82
|
divcld |
|
| 87 |
85 81 86
|
mulassd |
|
| 88 |
80 85
|
mulcomd |
|
| 89 |
84 87 88
|
3eqtr4rd |
|
| 90 |
57 89
|
sylan2 |
|
| 91 |
|
oveq2 |
|
| 92 |
91
|
eleq1d |
|
| 93 |
92
|
elrab |
|
| 94 |
93
|
simprbi |
|
| 95 |
46 94
|
syl |
|
| 96 |
57 95
|
sylan2 |
|
| 97 |
|
eqid |
|
| 98 |
1 2 3 4 5 6 97
|
elqaalem2 |
|
| 99 |
54
|
adantr |
|
| 100 |
57 47
|
sylan2 |
|
| 101 |
|
nnre |
|
| 102 |
|
nnrp |
|
| 103 |
|
mod0 |
|
| 104 |
101 102 103
|
syl2an |
|
| 105 |
99 100 104
|
syl2anc |
|
| 106 |
98 105
|
mpbid |
|
| 107 |
96 106
|
zmulcld |
|
| 108 |
90 107
|
eqeltrd |
|
| 109 |
79 52 108
|
elplyd |
|
| 110 |
77 109
|
eqeltrd |
|
| 111 |
|
eldifsn |
|
| 112 |
2 111
|
sylib |
|
| 113 |
112
|
simprd |
|
| 114 |
|
oveq1 |
|
| 115 |
16
|
ffvelcdmda |
|
| 116 |
54
|
nnne0d |
|
| 117 |
116
|
adantr |
|
| 118 |
115 56 117
|
divcan3d |
|
| 119 |
118
|
mpteq2dva |
|
| 120 |
|
ovexd |
|
| 121 |
8 120 10 18 13
|
offval2 |
|
| 122 |
119 121 17
|
3eqtr4d |
|
| 123 |
55 116
|
div0d |
|
| 124 |
123
|
mpteq2dv |
|
| 125 |
|
0cnd |
|
| 126 |
|
df-0p |
|
| 127 |
|
fconstmpt |
|
| 128 |
126 127
|
eqtri |
|
| 129 |
128
|
a1i |
|
| 130 |
8 125 10 129 13
|
offval2 |
|
| 131 |
124 130 129
|
3eqtr4d |
|
| 132 |
122 131
|
eqeq12d |
|
| 133 |
114 132
|
imbitrid |
|
| 134 |
133
|
necon3d |
|
| 135 |
113 134
|
mpd |
|
| 136 |
|
eldifsn |
|
| 137 |
110 135 136
|
sylanbrc |
|
| 138 |
9
|
fconst |
|
| 139 |
|
ffn |
|
| 140 |
138 139
|
mp1i |
|
| 141 |
16
|
ffnd |
|
| 142 |
|
inidm |
|
| 143 |
9
|
fvconst2 |
|
| 144 |
143
|
adantl |
|
| 145 |
3
|
adantr |
|
| 146 |
140 141 8 8 142 144 145
|
ofval |
|
| 147 |
1 146
|
mpdan |
|
| 148 |
55
|
mul01d |
|
| 149 |
147 148
|
eqtrd |
|
| 150 |
|
fveq1 |
|
| 151 |
150
|
eqeq1d |
|
| 152 |
151
|
rspcev |
|
| 153 |
137 149 152
|
syl2anc |
|
| 154 |
|
elaa |
|
| 155 |
1 153 154
|
sylanbrc |
|