Metamath Proof Explorer


Theorem coef2

Description: The domain and codomain of the coefficient function. (Contributed by Mario Carneiro, 22-Jul-2014)

Ref Expression
Hypothesis dgrval.1 A=coeffF
Assertion coef2 FPolyS0SA:0S

Proof

Step Hyp Ref Expression
1 dgrval.1 A=coeffF
2 1 coef FPolySA:0S0
3 2 adantr FPolyS0SA:0S0
4 simpr FPolyS0S0S
5 4 snssd FPolyS0S0S
6 ssequn2 0SS0=S
7 5 6 sylib FPolyS0SS0=S
8 7 feq3d FPolyS0SA:0S0A:0S
9 3 8 mpbid FPolyS0SA:0S