| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dgrval.1 |
⊢ 𝐴 = ( coeff ‘ 𝐹 ) |
| 2 |
1
|
coef |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → 𝐴 : ℕ0 ⟶ ( 𝑆 ∪ { 0 } ) ) |
| 3 |
2
|
adantr |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 0 ∈ 𝑆 ) → 𝐴 : ℕ0 ⟶ ( 𝑆 ∪ { 0 } ) ) |
| 4 |
|
simpr |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 0 ∈ 𝑆 ) → 0 ∈ 𝑆 ) |
| 5 |
4
|
snssd |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 0 ∈ 𝑆 ) → { 0 } ⊆ 𝑆 ) |
| 6 |
|
ssequn2 |
⊢ ( { 0 } ⊆ 𝑆 ↔ ( 𝑆 ∪ { 0 } ) = 𝑆 ) |
| 7 |
5 6
|
sylib |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 0 ∈ 𝑆 ) → ( 𝑆 ∪ { 0 } ) = 𝑆 ) |
| 8 |
7
|
feq3d |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 0 ∈ 𝑆 ) → ( 𝐴 : ℕ0 ⟶ ( 𝑆 ∪ { 0 } ) ↔ 𝐴 : ℕ0 ⟶ 𝑆 ) ) |
| 9 |
3 8
|
mpbid |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 0 ∈ 𝑆 ) → 𝐴 : ℕ0 ⟶ 𝑆 ) |