| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dgrval.1 |
|- A = ( coeff ` F ) |
| 2 |
1
|
coef |
|- ( F e. ( Poly ` S ) -> A : NN0 --> ( S u. { 0 } ) ) |
| 3 |
2
|
adantr |
|- ( ( F e. ( Poly ` S ) /\ 0 e. S ) -> A : NN0 --> ( S u. { 0 } ) ) |
| 4 |
|
simpr |
|- ( ( F e. ( Poly ` S ) /\ 0 e. S ) -> 0 e. S ) |
| 5 |
4
|
snssd |
|- ( ( F e. ( Poly ` S ) /\ 0 e. S ) -> { 0 } C_ S ) |
| 6 |
|
ssequn2 |
|- ( { 0 } C_ S <-> ( S u. { 0 } ) = S ) |
| 7 |
5 6
|
sylib |
|- ( ( F e. ( Poly ` S ) /\ 0 e. S ) -> ( S u. { 0 } ) = S ) |
| 8 |
7
|
feq3d |
|- ( ( F e. ( Poly ` S ) /\ 0 e. S ) -> ( A : NN0 --> ( S u. { 0 } ) <-> A : NN0 --> S ) ) |
| 9 |
3 8
|
mpbid |
|- ( ( F e. ( Poly ` S ) /\ 0 e. S ) -> A : NN0 --> S ) |