Metamath Proof Explorer


Theorem seqf

Description: Range of the recursive sequence builder (special case of seqf2 ). (Contributed by Mario Carneiro, 24-Jun-2013)

Ref Expression
Hypotheses seqf.1 Z=M
seqf.2 φM
seqf.3 φxZFxS
seqf.4 φxSySx+˙yS
Assertion seqf φseqM+˙F:ZS

Proof

Step Hyp Ref Expression
1 seqf.1 Z=M
2 seqf.2 φM
3 seqf.3 φxZFxS
4 seqf.4 φxSySx+˙yS
5 fveq2 x=MFx=FM
6 5 eleq1d x=MFxSFMS
7 3 ralrimiva φxZFxS
8 uzid MMM
9 2 8 syl φMM
10 9 1 eleqtrrdi φMZ
11 6 7 10 rspcdva φFMS
12 peano2uzr MxM+1xM
13 2 12 sylan φxM+1xM
14 13 1 eleqtrrdi φxM+1xZ
15 14 3 syldan φxM+1FxS
16 11 4 1 2 15 seqf2 φseqM+˙F:ZS