Metamath Proof Explorer


Definition df-dgraa

Description: Define the degree of an algebraic number as the smallest degree of any nonzero polynomial which has said number as a root. (Contributed by Stefan O'Rear, 25-Nov-2014) (Revised by AV, 29-Sep-2020)

Ref Expression
Assertion df-dgraa deg𝔸=x𝔸supd|pPoly0𝑝degp=dpx=0<

Detailed syntax breakdown

Step Hyp Ref Expression
0 cdgraa classdeg𝔸
1 vx setvarx
2 caa class𝔸
3 vd setvard
4 cn class
5 vp setvarp
6 cply classPoly
7 cq class
8 7 6 cfv classPoly
9 c0p class0𝑝
10 9 csn class0𝑝
11 8 10 cdif classPoly0𝑝
12 cdgr classdeg
13 5 cv setvarp
14 13 12 cfv classdegp
15 3 cv setvard
16 14 15 wceq wffdegp=d
17 1 cv setvarx
18 17 13 cfv classpx
19 cc0 class0
20 18 19 wceq wffpx=0
21 16 20 wa wffdegp=dpx=0
22 21 5 11 wrex wffpPoly0𝑝degp=dpx=0
23 22 3 4 crab classd|pPoly0𝑝degp=dpx=0
24 cr class
25 clt class<
26 23 24 25 cinf classsupd|pPoly0𝑝degp=dpx=0<
27 1 2 26 cmpt classx𝔸supd|pPoly0𝑝degp=dpx=0<
28 0 27 wceq wffdeg𝔸=x𝔸supd|pPoly0𝑝degp=dpx=0<