Metamath Proof Explorer


Definition df-dgraa

Description: Define the degree of an algebraic number as the smallest degree of any nonzero polynomial which has said number as a root. (Contributed by Stefan O'Rear, 25-Nov-2014) (Revised by AV, 29-Sep-2020)

Ref Expression
Assertion df-dgraa degAA = ( 𝑥 ∈ 𝔸 ↦ inf ( { 𝑑 ∈ ℕ ∣ ∃ 𝑝 ∈ ( ( Poly ‘ ℚ ) ∖ { 0𝑝 } ) ( ( deg ‘ 𝑝 ) = 𝑑 ∧ ( 𝑝𝑥 ) = 0 ) } , ℝ , < ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cdgraa degAA
1 vx 𝑥
2 caa 𝔸
3 vd 𝑑
4 cn
5 vp 𝑝
6 cply Poly
7 cq
8 7 6 cfv ( Poly ‘ ℚ )
9 c0p 0𝑝
10 9 csn { 0𝑝 }
11 8 10 cdif ( ( Poly ‘ ℚ ) ∖ { 0𝑝 } )
12 cdgr deg
13 5 cv 𝑝
14 13 12 cfv ( deg ‘ 𝑝 )
15 3 cv 𝑑
16 14 15 wceq ( deg ‘ 𝑝 ) = 𝑑
17 1 cv 𝑥
18 17 13 cfv ( 𝑝𝑥 )
19 cc0 0
20 18 19 wceq ( 𝑝𝑥 ) = 0
21 16 20 wa ( ( deg ‘ 𝑝 ) = 𝑑 ∧ ( 𝑝𝑥 ) = 0 )
22 21 5 11 wrex 𝑝 ∈ ( ( Poly ‘ ℚ ) ∖ { 0𝑝 } ) ( ( deg ‘ 𝑝 ) = 𝑑 ∧ ( 𝑝𝑥 ) = 0 )
23 22 3 4 crab { 𝑑 ∈ ℕ ∣ ∃ 𝑝 ∈ ( ( Poly ‘ ℚ ) ∖ { 0𝑝 } ) ( ( deg ‘ 𝑝 ) = 𝑑 ∧ ( 𝑝𝑥 ) = 0 ) }
24 cr
25 clt <
26 23 24 25 cinf inf ( { 𝑑 ∈ ℕ ∣ ∃ 𝑝 ∈ ( ( Poly ‘ ℚ ) ∖ { 0𝑝 } ) ( ( deg ‘ 𝑝 ) = 𝑑 ∧ ( 𝑝𝑥 ) = 0 ) } , ℝ , < )
27 1 2 26 cmpt ( 𝑥 ∈ 𝔸 ↦ inf ( { 𝑑 ∈ ℕ ∣ ∃ 𝑝 ∈ ( ( Poly ‘ ℚ ) ∖ { 0𝑝 } ) ( ( deg ‘ 𝑝 ) = 𝑑 ∧ ( 𝑝𝑥 ) = 0 ) } , ℝ , < ) )
28 0 27 wceq degAA = ( 𝑥 ∈ 𝔸 ↦ inf ( { 𝑑 ∈ ℕ ∣ ∃ 𝑝 ∈ ( ( Poly ‘ ℚ ) ∖ { 0𝑝 } ) ( ( deg ‘ 𝑝 ) = 𝑑 ∧ ( 𝑝𝑥 ) = 0 ) } , ℝ , < ) )