Step |
Hyp |
Ref |
Expression |
0 |
|
cdgraa |
⊢ degAA |
1 |
|
vx |
⊢ 𝑥 |
2 |
|
caa |
⊢ 𝔸 |
3 |
|
vd |
⊢ 𝑑 |
4 |
|
cn |
⊢ ℕ |
5 |
|
vp |
⊢ 𝑝 |
6 |
|
cply |
⊢ Poly |
7 |
|
cq |
⊢ ℚ |
8 |
7 6
|
cfv |
⊢ ( Poly ‘ ℚ ) |
9 |
|
c0p |
⊢ 0𝑝 |
10 |
9
|
csn |
⊢ { 0𝑝 } |
11 |
8 10
|
cdif |
⊢ ( ( Poly ‘ ℚ ) ∖ { 0𝑝 } ) |
12 |
|
cdgr |
⊢ deg |
13 |
5
|
cv |
⊢ 𝑝 |
14 |
13 12
|
cfv |
⊢ ( deg ‘ 𝑝 ) |
15 |
3
|
cv |
⊢ 𝑑 |
16 |
14 15
|
wceq |
⊢ ( deg ‘ 𝑝 ) = 𝑑 |
17 |
1
|
cv |
⊢ 𝑥 |
18 |
17 13
|
cfv |
⊢ ( 𝑝 ‘ 𝑥 ) |
19 |
|
cc0 |
⊢ 0 |
20 |
18 19
|
wceq |
⊢ ( 𝑝 ‘ 𝑥 ) = 0 |
21 |
16 20
|
wa |
⊢ ( ( deg ‘ 𝑝 ) = 𝑑 ∧ ( 𝑝 ‘ 𝑥 ) = 0 ) |
22 |
21 5 11
|
wrex |
⊢ ∃ 𝑝 ∈ ( ( Poly ‘ ℚ ) ∖ { 0𝑝 } ) ( ( deg ‘ 𝑝 ) = 𝑑 ∧ ( 𝑝 ‘ 𝑥 ) = 0 ) |
23 |
22 3 4
|
crab |
⊢ { 𝑑 ∈ ℕ ∣ ∃ 𝑝 ∈ ( ( Poly ‘ ℚ ) ∖ { 0𝑝 } ) ( ( deg ‘ 𝑝 ) = 𝑑 ∧ ( 𝑝 ‘ 𝑥 ) = 0 ) } |
24 |
|
cr |
⊢ ℝ |
25 |
|
clt |
⊢ < |
26 |
23 24 25
|
cinf |
⊢ inf ( { 𝑑 ∈ ℕ ∣ ∃ 𝑝 ∈ ( ( Poly ‘ ℚ ) ∖ { 0𝑝 } ) ( ( deg ‘ 𝑝 ) = 𝑑 ∧ ( 𝑝 ‘ 𝑥 ) = 0 ) } , ℝ , < ) |
27 |
1 2 26
|
cmpt |
⊢ ( 𝑥 ∈ 𝔸 ↦ inf ( { 𝑑 ∈ ℕ ∣ ∃ 𝑝 ∈ ( ( Poly ‘ ℚ ) ∖ { 0𝑝 } ) ( ( deg ‘ 𝑝 ) = 𝑑 ∧ ( 𝑝 ‘ 𝑥 ) = 0 ) } , ℝ , < ) ) |
28 |
0 27
|
wceq |
⊢ degAA = ( 𝑥 ∈ 𝔸 ↦ inf ( { 𝑑 ∈ ℕ ∣ ∃ 𝑝 ∈ ( ( Poly ‘ ℚ ) ∖ { 0𝑝 } ) ( ( deg ‘ 𝑝 ) = 𝑑 ∧ ( 𝑝 ‘ 𝑥 ) = 0 ) } , ℝ , < ) ) |