Metamath Proof Explorer


Definition df-dgraa

Description: Define the degree of an algebraic number as the smallest degree of any nonzero polynomial which has said number as a root. (Contributed by Stefan O'Rear, 25-Nov-2014) (Revised by AV, 29-Sep-2020)

Ref Expression
Assertion df-dgraa
|- degAA = ( x e. AA |-> inf ( { d e. NN | E. p e. ( ( Poly ` QQ ) \ { 0p } ) ( ( deg ` p ) = d /\ ( p ` x ) = 0 ) } , RR , < ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cdgraa
 |-  degAA
1 vx
 |-  x
2 caa
 |-  AA
3 vd
 |-  d
4 cn
 |-  NN
5 vp
 |-  p
6 cply
 |-  Poly
7 cq
 |-  QQ
8 7 6 cfv
 |-  ( Poly ` QQ )
9 c0p
 |-  0p
10 9 csn
 |-  { 0p }
11 8 10 cdif
 |-  ( ( Poly ` QQ ) \ { 0p } )
12 cdgr
 |-  deg
13 5 cv
 |-  p
14 13 12 cfv
 |-  ( deg ` p )
15 3 cv
 |-  d
16 14 15 wceq
 |-  ( deg ` p ) = d
17 1 cv
 |-  x
18 17 13 cfv
 |-  ( p ` x )
19 cc0
 |-  0
20 18 19 wceq
 |-  ( p ` x ) = 0
21 16 20 wa
 |-  ( ( deg ` p ) = d /\ ( p ` x ) = 0 )
22 21 5 11 wrex
 |-  E. p e. ( ( Poly ` QQ ) \ { 0p } ) ( ( deg ` p ) = d /\ ( p ` x ) = 0 )
23 22 3 4 crab
 |-  { d e. NN | E. p e. ( ( Poly ` QQ ) \ { 0p } ) ( ( deg ` p ) = d /\ ( p ` x ) = 0 ) }
24 cr
 |-  RR
25 clt
 |-  <
26 23 24 25 cinf
 |-  inf ( { d e. NN | E. p e. ( ( Poly ` QQ ) \ { 0p } ) ( ( deg ` p ) = d /\ ( p ` x ) = 0 ) } , RR , < )
27 1 2 26 cmpt
 |-  ( x e. AA |-> inf ( { d e. NN | E. p e. ( ( Poly ` QQ ) \ { 0p } ) ( ( deg ` p ) = d /\ ( p ` x ) = 0 ) } , RR , < ) )
28 0 27 wceq
 |-  degAA = ( x e. AA |-> inf ( { d e. NN | E. p e. ( ( Poly ` QQ ) \ { 0p } ) ( ( deg ` p ) = d /\ ( p ` x ) = 0 ) } , RR , < ) )