| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cdgraa |
|- degAA |
| 1 |
|
vx |
|- x |
| 2 |
|
caa |
|- AA |
| 3 |
|
vd |
|- d |
| 4 |
|
cn |
|- NN |
| 5 |
|
vp |
|- p |
| 6 |
|
cply |
|- Poly |
| 7 |
|
cq |
|- QQ |
| 8 |
7 6
|
cfv |
|- ( Poly ` QQ ) |
| 9 |
|
c0p |
|- 0p |
| 10 |
9
|
csn |
|- { 0p } |
| 11 |
8 10
|
cdif |
|- ( ( Poly ` QQ ) \ { 0p } ) |
| 12 |
|
cdgr |
|- deg |
| 13 |
5
|
cv |
|- p |
| 14 |
13 12
|
cfv |
|- ( deg ` p ) |
| 15 |
3
|
cv |
|- d |
| 16 |
14 15
|
wceq |
|- ( deg ` p ) = d |
| 17 |
1
|
cv |
|- x |
| 18 |
17 13
|
cfv |
|- ( p ` x ) |
| 19 |
|
cc0 |
|- 0 |
| 20 |
18 19
|
wceq |
|- ( p ` x ) = 0 |
| 21 |
16 20
|
wa |
|- ( ( deg ` p ) = d /\ ( p ` x ) = 0 ) |
| 22 |
21 5 11
|
wrex |
|- E. p e. ( ( Poly ` QQ ) \ { 0p } ) ( ( deg ` p ) = d /\ ( p ` x ) = 0 ) |
| 23 |
22 3 4
|
crab |
|- { d e. NN | E. p e. ( ( Poly ` QQ ) \ { 0p } ) ( ( deg ` p ) = d /\ ( p ` x ) = 0 ) } |
| 24 |
|
cr |
|- RR |
| 25 |
|
clt |
|- < |
| 26 |
23 24 25
|
cinf |
|- inf ( { d e. NN | E. p e. ( ( Poly ` QQ ) \ { 0p } ) ( ( deg ` p ) = d /\ ( p ` x ) = 0 ) } , RR , < ) |
| 27 |
1 2 26
|
cmpt |
|- ( x e. AA |-> inf ( { d e. NN | E. p e. ( ( Poly ` QQ ) \ { 0p } ) ( ( deg ` p ) = d /\ ( p ` x ) = 0 ) } , RR , < ) ) |
| 28 |
0 27
|
wceq |
|- degAA = ( x e. AA |-> inf ( { d e. NN | E. p e. ( ( Poly ` QQ ) \ { 0p } ) ( ( deg ` p ) = d /\ ( p ` x ) = 0 ) } , RR , < ) ) |