Metamath Proof Explorer


Theorem dgrnznn

Description: A nonzero polynomial with a root has positive degree. (Contributed by Stefan O'Rear, 25-Nov-2014)

Ref Expression
Assertion dgrnznn PPolySP0𝑝APA=0degP

Proof

Step Hyp Ref Expression
1 simpr APA=0P=×P0P=×P0
2 1 fveq1d APA=0P=×P0PA=×P0A
3 simplr APA=0P=×P0PA=0
4 fvex P0V
5 4 fvconst2 A×P0A=P0
6 5 ad2antrr APA=0P=×P0×P0A=P0
7 2 3 6 3eqtr3rd APA=0P=×P0P0=0
8 7 sneqd APA=0P=×P0P0=0
9 8 xpeq2d APA=0P=×P0×P0=×0
10 1 9 eqtrd APA=0P=×P0P=×0
11 df-0p 0𝑝=×0
12 10 11 eqtr4di APA=0P=×P0P=0𝑝
13 12 ex APA=0P=×P0P=0𝑝
14 13 necon3ad APA=0P0𝑝¬P=×P0
15 14 impcom P0𝑝APA=0¬P=×P0
16 15 adantll PPolySP0𝑝APA=0¬P=×P0
17 0dgrb PPolySdegP=0P=×P0
18 17 ad2antrr PPolySP0𝑝APA=0degP=0P=×P0
19 16 18 mtbird PPolySP0𝑝APA=0¬degP=0
20 dgrcl PPolySdegP0
21 20 ad2antrr PPolySP0𝑝APA=0degP0
22 elnn0 degP0degPdegP=0
23 21 22 sylib PPolySP0𝑝APA=0degPdegP=0
24 orel2 ¬degP=0degPdegP=0degP
25 19 23 24 sylc PPolySP0𝑝APA=0degP