| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
|
| 2 |
|
eqid |
|
| 3 |
1 2
|
coeid |
|
| 4 |
3
|
adantr |
|
| 5 |
|
simplr |
|
| 6 |
5
|
oveq2d |
|
| 7 |
6
|
sumeq1d |
|
| 8 |
|
0z |
|
| 9 |
|
exp0 |
|
| 10 |
9
|
adantl |
|
| 11 |
10
|
oveq2d |
|
| 12 |
1
|
coef3 |
|
| 13 |
|
0nn0 |
|
| 14 |
|
ffvelcdm |
|
| 15 |
12 13 14
|
sylancl |
|
| 16 |
15
|
ad2antrr |
|
| 17 |
16
|
mulridd |
|
| 18 |
11 17
|
eqtrd |
|
| 19 |
18 16
|
eqeltrd |
|
| 20 |
|
fveq2 |
|
| 21 |
|
oveq2 |
|
| 22 |
20 21
|
oveq12d |
|
| 23 |
22
|
fsum1 |
|
| 24 |
8 19 23
|
sylancr |
|
| 25 |
24 18
|
eqtrd |
|
| 26 |
7 25
|
eqtrd |
|
| 27 |
26
|
mpteq2dva |
|
| 28 |
4 27
|
eqtrd |
|
| 29 |
|
fconstmpt |
|
| 30 |
28 29
|
eqtr4di |
|
| 31 |
30
|
fveq1d |
|
| 32 |
|
0cn |
|
| 33 |
|
fvex |
|
| 34 |
33
|
fvconst2 |
|
| 35 |
32 34
|
ax-mp |
|
| 36 |
31 35
|
eqtrdi |
|
| 37 |
36
|
sneqd |
|
| 38 |
37
|
xpeq2d |
|
| 39 |
30 38
|
eqtr4d |
|
| 40 |
39
|
ex |
|
| 41 |
|
plyf |
|
| 42 |
|
ffvelcdm |
|
| 43 |
41 32 42
|
sylancl |
|
| 44 |
|
0dgr |
|
| 45 |
43 44
|
syl |
|
| 46 |
|
fveqeq2 |
|
| 47 |
45 46
|
syl5ibrcom |
|
| 48 |
40 47
|
impbid |
|