Metamath Proof Explorer


Theorem coeid

Description: Reconstruct a polynomial as an explicit sum of the coefficient function up to the degree of the polynomial. (Contributed by Mario Carneiro, 22-Jul-2014)

Ref Expression
Hypotheses dgrub.1 A=coeffF
dgrub.2 N=degF
Assertion coeid FPolySF=zk=0NAkzk

Proof

Step Hyp Ref Expression
1 dgrub.1 A=coeffF
2 dgrub.2 N=degF
3 elply2 FPolySSn0aS00an+1=0F=xm=0namxm
4 3 simprbi FPolySn0aS00an+1=0F=xm=0namxm
5 simpll FPolySn0aS00an+1=0F=xm=0namxmFPolyS
6 simplrl FPolySn0aS00an+1=0F=xm=0namxmn0
7 simplrr FPolySn0aS00an+1=0F=xm=0namxmaS00
8 simprl FPolySn0aS00an+1=0F=xm=0namxman+1=0
9 simprr FPolySn0aS00an+1=0F=xm=0namxmF=xm=0namxm
10 fveq2 m=kam=ak
11 oveq2 m=kxm=xk
12 10 11 oveq12d m=kamxm=akxk
13 12 cbvsumv m=0namxm=k=0nakxk
14 oveq1 x=zxk=zk
15 14 oveq2d x=zakxk=akzk
16 15 sumeq2sdv x=zk=0nakxk=k=0nakzk
17 13 16 eqtrid x=zm=0namxm=k=0nakzk
18 17 cbvmptv xm=0namxm=zk=0nakzk
19 9 18 eqtrdi FPolySn0aS00an+1=0F=xm=0namxmF=zk=0nakzk
20 1 2 5 6 7 8 19 coeidlem FPolySn0aS00an+1=0F=xm=0namxmF=zk=0NAkzk
21 20 ex FPolySn0aS00an+1=0F=xm=0namxmF=zk=0NAkzk
22 21 rexlimdvva FPolySn0aS00an+1=0F=xm=0namxmF=zk=0NAkzk
23 4 22 mpd FPolySF=zk=0NAkzk