Metamath Proof Explorer


Theorem coeidlem

Description: Lemma for coeid . (Contributed by Mario Carneiro, 22-Jul-2014)

Ref Expression
Hypotheses dgrub.1 A = coeff F
dgrub.2 N = deg F
coeid.3 φ F Poly S
coeid.4 φ M 0
coeid.5 φ B S 0 0
coeid.6 φ B M + 1 = 0
coeid.7 φ F = z k = 0 M B k z k
Assertion coeidlem φ F = z k = 0 N A k z k

Proof

Step Hyp Ref Expression
1 dgrub.1 A = coeff F
2 dgrub.2 N = deg F
3 coeid.3 φ F Poly S
4 coeid.4 φ M 0
5 coeid.5 φ B S 0 0
6 coeid.6 φ B M + 1 = 0
7 coeid.7 φ F = z k = 0 M B k z k
8 plybss F Poly S S
9 3 8 syl φ S
10 0cnd φ 0
11 10 snssd φ 0
12 9 11 unssd φ S 0
13 cnex V
14 ssexg S 0 V S 0 V
15 12 13 14 sylancl φ S 0 V
16 nn0ex 0 V
17 elmapg S 0 V 0 V B S 0 0 B : 0 S 0
18 15 16 17 sylancl φ B S 0 0 B : 0 S 0
19 5 18 mpbid φ B : 0 S 0
20 19 12 fssd φ B : 0
21 3 4 20 6 7 coeeq φ coeff F = B
22 1 21 syl5req φ B = A
23 22 adantr φ z B = A
24 fveq1 B = A B k = A k
25 24 oveq1d B = A B k z k = A k z k
26 25 sumeq2sdv B = A k = 0 M B k z k = k = 0 M A k z k
27 23 26 syl φ z k = 0 M B k z k = k = 0 M A k z k
28 3 adantr φ z F Poly S
29 dgrcl F Poly S deg F 0
30 2 29 eqeltrid F Poly S N 0
31 28 30 syl φ z N 0
32 31 nn0zd φ z N
33 4 adantr φ z M 0
34 33 nn0zd φ z M
35 23 imaeq1d φ z B M + 1 = A M + 1
36 6 adantr φ z B M + 1 = 0
37 35 36 eqtr3d φ z A M + 1 = 0
38 1 2 dgrlb F Poly S M 0 A M + 1 = 0 N M
39 28 33 37 38 syl3anc φ z N M
40 eluz2 M N N M N M
41 32 34 39 40 syl3anbrc φ z M N
42 fzss2 M N 0 N 0 M
43 41 42 syl φ z 0 N 0 M
44 elfznn0 k 0 N k 0
45 plyssc Poly S Poly
46 45 3 sseldi φ F Poly
47 1 coef3 F Poly A : 0
48 46 47 syl φ A : 0
49 48 adantr φ z A : 0
50 49 ffvelrnda φ z k 0 A k
51 expcl z k 0 z k
52 51 adantll φ z k 0 z k
53 50 52 mulcld φ z k 0 A k z k
54 44 53 sylan2 φ z k 0 N A k z k
55 eldifn k 0 M 0 N ¬ k 0 N
56 55 adantl φ z k 0 M 0 N ¬ k 0 N
57 eldifi k 0 M 0 N k 0 M
58 elfznn0 k 0 M k 0
59 57 58 syl k 0 M 0 N k 0
60 1 2 dgrub F Poly S k 0 A k 0 k N
61 60 3expia F Poly S k 0 A k 0 k N
62 28 59 61 syl2an φ z k 0 M 0 N A k 0 k N
63 elfzuz k 0 M k 0
64 57 63 syl k 0 M 0 N k 0
65 elfz5 k 0 N k 0 N k N
66 64 32 65 syl2anr φ z k 0 M 0 N k 0 N k N
67 62 66 sylibrd φ z k 0 M 0 N A k 0 k 0 N
68 67 necon1bd φ z k 0 M 0 N ¬ k 0 N A k = 0
69 56 68 mpd φ z k 0 M 0 N A k = 0
70 69 oveq1d φ z k 0 M 0 N A k z k = 0 z k
71 simpr φ z z
72 71 59 51 syl2an φ z k 0 M 0 N z k
73 72 mul02d φ z k 0 M 0 N 0 z k = 0
74 70 73 eqtrd φ z k 0 M 0 N A k z k = 0
75 fzfid φ z 0 M Fin
76 43 54 74 75 fsumss φ z k = 0 N A k z k = k = 0 M A k z k
77 27 76 eqtr4d φ z k = 0 M B k z k = k = 0 N A k z k
78 77 mpteq2dva φ z k = 0 M B k z k = z k = 0 N A k z k
79 7 78 eqtrd φ F = z k = 0 N A k z k