Metamath Proof Explorer


Theorem dgrub

Description: If the M -th coefficient of F is nonzero, then the degree of F is at least M . (Contributed by Mario Carneiro, 22-Jul-2014)

Ref Expression
Hypotheses dgrub.1 A = coeff F
dgrub.2 N = deg F
Assertion dgrub F Poly S M 0 A M 0 M N

Proof

Step Hyp Ref Expression
1 dgrub.1 A = coeff F
2 dgrub.2 N = deg F
3 simp2 F Poly S M 0 A M 0 M 0
4 3 nn0red F Poly S M 0 A M 0 M
5 simp1 F Poly S M 0 A M 0 F Poly S
6 dgrcl F Poly S deg F 0
7 2 6 eqeltrid F Poly S N 0
8 5 7 syl F Poly S M 0 A M 0 N 0
9 8 nn0red F Poly S M 0 A M 0 N
10 1 dgrval F Poly S deg F = sup A -1 0 0 <
11 2 10 eqtrid F Poly S N = sup A -1 0 0 <
12 5 11 syl F Poly S M 0 A M 0 N = sup A -1 0 0 <
13 1 coef3 F Poly S A : 0
14 5 13 syl F Poly S M 0 A M 0 A : 0
15 14 3 ffvelrnd F Poly S M 0 A M 0 A M
16 simp3 F Poly S M 0 A M 0 A M 0
17 eldifsn A M 0 A M A M 0
18 15 16 17 sylanbrc F Poly S M 0 A M 0 A M 0
19 1 coef F Poly S A : 0 S 0
20 ffn A : 0 S 0 A Fn 0
21 elpreima A Fn 0 M A -1 0 M 0 A M 0
22 5 19 20 21 4syl F Poly S M 0 A M 0 M A -1 0 M 0 A M 0
23 3 18 22 mpbir2and F Poly S M 0 A M 0 M A -1 0
24 nn0ssre 0
25 ltso < Or
26 soss 0 < Or < Or 0
27 24 25 26 mp2 < Or 0
28 27 a1i F Poly S < Or 0
29 0zd F Poly S 0
30 cnvimass A -1 0 dom A
31 30 19 fssdm F Poly S A -1 0 0
32 1 dgrlem F Poly S A : 0 S 0 n x A -1 0 x n
33 32 simprd F Poly S n x A -1 0 x n
34 nn0uz 0 = 0
35 34 uzsupss 0 A -1 0 0 n x A -1 0 x n n 0 x A -1 0 ¬ n < x x 0 x < n y A -1 0 x < y
36 29 31 33 35 syl3anc F Poly S n 0 x A -1 0 ¬ n < x x 0 x < n y A -1 0 x < y
37 28 36 supub F Poly S M A -1 0 ¬ sup A -1 0 0 < < M
38 5 23 37 sylc F Poly S M 0 A M 0 ¬ sup A -1 0 0 < < M
39 12 38 eqnbrtrd F Poly S M 0 A M 0 ¬ N < M
40 4 9 39 nltled F Poly S M 0 A M 0 M N