Metamath Proof Explorer


Theorem dgrub

Description: If the M -th coefficient of F is nonzero, then the degree of F is at least M . (Contributed by Mario Carneiro, 22-Jul-2014)

Ref Expression
Hypotheses dgrub.1 A=coeffF
dgrub.2 N=degF
Assertion dgrub FPolySM0AM0MN

Proof

Step Hyp Ref Expression
1 dgrub.1 A=coeffF
2 dgrub.2 N=degF
3 simp2 FPolySM0AM0M0
4 3 nn0red FPolySM0AM0M
5 simp1 FPolySM0AM0FPolyS
6 dgrcl FPolySdegF0
7 2 6 eqeltrid FPolySN0
8 5 7 syl FPolySM0AM0N0
9 8 nn0red FPolySM0AM0N
10 1 dgrval FPolySdegF=supA-100<
11 2 10 eqtrid FPolySN=supA-100<
12 5 11 syl FPolySM0AM0N=supA-100<
13 1 coef3 FPolySA:0
14 5 13 syl FPolySM0AM0A:0
15 14 3 ffvelcdmd FPolySM0AM0AM
16 simp3 FPolySM0AM0AM0
17 eldifsn AM0AMAM0
18 15 16 17 sylanbrc FPolySM0AM0AM0
19 1 coef FPolySA:0S0
20 ffn A:0S0AFn0
21 elpreima AFn0MA-10M0AM0
22 5 19 20 21 4syl FPolySM0AM0MA-10M0AM0
23 3 18 22 mpbir2and FPolySM0AM0MA-10
24 nn0ssre 0
25 ltso <Or
26 soss 0<Or<Or0
27 24 25 26 mp2 <Or0
28 27 a1i FPolyS<Or0
29 0zd FPolyS0
30 cnvimass A-10domA
31 30 19 fssdm FPolySA-100
32 1 dgrlem FPolySA:0S0nxA-10xn
33 32 simprd FPolySnxA-10xn
34 nn0uz 0=0
35 34 uzsupss 0A-100nxA-10xnn0xA-10¬n<xx0x<nyA-10x<y
36 29 31 33 35 syl3anc FPolySn0xA-10¬n<xx0x<nyA-10x<y
37 28 36 supub FPolySMA-10¬supA-100<<M
38 5 23 37 sylc FPolySM0AM0¬supA-100<<M
39 12 38 eqnbrtrd FPolySM0AM0¬N<M
40 4 9 39 nltled FPolySM0AM0MN