Metamath Proof Explorer


Theorem dgrub2

Description: All the coefficients above the degree of F are zero. (Contributed by Mario Carneiro, 23-Jul-2014)

Ref Expression
Hypotheses dgrub.1 A=coeffF
dgrub.2 N=degF
Assertion dgrub2 FPolySAN+1=0

Proof

Step Hyp Ref Expression
1 dgrub.1 A=coeffF
2 dgrub.2 N=degF
3 1 2 dgrub FPolySk0Ak0kN
4 3 3expia FPolySk0Ak0kN
5 4 ralrimiva FPolySk0Ak0kN
6 dgrcl FPolySdegF0
7 2 6 eqeltrid FPolySN0
8 1 coef3 FPolySA:0
9 plyco0 N0A:0AN+1=0k0Ak0kN
10 7 8 9 syl2anc FPolySAN+1=0k0Ak0kN
11 5 10 mpbird FPolySAN+1=0