| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dgrub.1 |
⊢ 𝐴 = ( coeff ‘ 𝐹 ) |
| 2 |
|
dgrub.2 |
⊢ 𝑁 = ( deg ‘ 𝐹 ) |
| 3 |
|
simp2 |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑀 ∈ ℕ0 ∧ ( 𝐴 ‘ 𝑀 ) ≠ 0 ) → 𝑀 ∈ ℕ0 ) |
| 4 |
3
|
nn0red |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑀 ∈ ℕ0 ∧ ( 𝐴 ‘ 𝑀 ) ≠ 0 ) → 𝑀 ∈ ℝ ) |
| 5 |
|
simp1 |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑀 ∈ ℕ0 ∧ ( 𝐴 ‘ 𝑀 ) ≠ 0 ) → 𝐹 ∈ ( Poly ‘ 𝑆 ) ) |
| 6 |
|
dgrcl |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → ( deg ‘ 𝐹 ) ∈ ℕ0 ) |
| 7 |
2 6
|
eqeltrid |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → 𝑁 ∈ ℕ0 ) |
| 8 |
5 7
|
syl |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑀 ∈ ℕ0 ∧ ( 𝐴 ‘ 𝑀 ) ≠ 0 ) → 𝑁 ∈ ℕ0 ) |
| 9 |
8
|
nn0red |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑀 ∈ ℕ0 ∧ ( 𝐴 ‘ 𝑀 ) ≠ 0 ) → 𝑁 ∈ ℝ ) |
| 10 |
1
|
dgrval |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → ( deg ‘ 𝐹 ) = sup ( ( ◡ 𝐴 “ ( ℂ ∖ { 0 } ) ) , ℕ0 , < ) ) |
| 11 |
2 10
|
eqtrid |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → 𝑁 = sup ( ( ◡ 𝐴 “ ( ℂ ∖ { 0 } ) ) , ℕ0 , < ) ) |
| 12 |
5 11
|
syl |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑀 ∈ ℕ0 ∧ ( 𝐴 ‘ 𝑀 ) ≠ 0 ) → 𝑁 = sup ( ( ◡ 𝐴 “ ( ℂ ∖ { 0 } ) ) , ℕ0 , < ) ) |
| 13 |
1
|
coef3 |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → 𝐴 : ℕ0 ⟶ ℂ ) |
| 14 |
5 13
|
syl |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑀 ∈ ℕ0 ∧ ( 𝐴 ‘ 𝑀 ) ≠ 0 ) → 𝐴 : ℕ0 ⟶ ℂ ) |
| 15 |
14 3
|
ffvelcdmd |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑀 ∈ ℕ0 ∧ ( 𝐴 ‘ 𝑀 ) ≠ 0 ) → ( 𝐴 ‘ 𝑀 ) ∈ ℂ ) |
| 16 |
|
simp3 |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑀 ∈ ℕ0 ∧ ( 𝐴 ‘ 𝑀 ) ≠ 0 ) → ( 𝐴 ‘ 𝑀 ) ≠ 0 ) |
| 17 |
|
eldifsn |
⊢ ( ( 𝐴 ‘ 𝑀 ) ∈ ( ℂ ∖ { 0 } ) ↔ ( ( 𝐴 ‘ 𝑀 ) ∈ ℂ ∧ ( 𝐴 ‘ 𝑀 ) ≠ 0 ) ) |
| 18 |
15 16 17
|
sylanbrc |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑀 ∈ ℕ0 ∧ ( 𝐴 ‘ 𝑀 ) ≠ 0 ) → ( 𝐴 ‘ 𝑀 ) ∈ ( ℂ ∖ { 0 } ) ) |
| 19 |
1
|
coef |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → 𝐴 : ℕ0 ⟶ ( 𝑆 ∪ { 0 } ) ) |
| 20 |
|
ffn |
⊢ ( 𝐴 : ℕ0 ⟶ ( 𝑆 ∪ { 0 } ) → 𝐴 Fn ℕ0 ) |
| 21 |
|
elpreima |
⊢ ( 𝐴 Fn ℕ0 → ( 𝑀 ∈ ( ◡ 𝐴 “ ( ℂ ∖ { 0 } ) ) ↔ ( 𝑀 ∈ ℕ0 ∧ ( 𝐴 ‘ 𝑀 ) ∈ ( ℂ ∖ { 0 } ) ) ) ) |
| 22 |
5 19 20 21
|
4syl |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑀 ∈ ℕ0 ∧ ( 𝐴 ‘ 𝑀 ) ≠ 0 ) → ( 𝑀 ∈ ( ◡ 𝐴 “ ( ℂ ∖ { 0 } ) ) ↔ ( 𝑀 ∈ ℕ0 ∧ ( 𝐴 ‘ 𝑀 ) ∈ ( ℂ ∖ { 0 } ) ) ) ) |
| 23 |
3 18 22
|
mpbir2and |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑀 ∈ ℕ0 ∧ ( 𝐴 ‘ 𝑀 ) ≠ 0 ) → 𝑀 ∈ ( ◡ 𝐴 “ ( ℂ ∖ { 0 } ) ) ) |
| 24 |
|
nn0ssre |
⊢ ℕ0 ⊆ ℝ |
| 25 |
|
ltso |
⊢ < Or ℝ |
| 26 |
|
soss |
⊢ ( ℕ0 ⊆ ℝ → ( < Or ℝ → < Or ℕ0 ) ) |
| 27 |
24 25 26
|
mp2 |
⊢ < Or ℕ0 |
| 28 |
27
|
a1i |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → < Or ℕ0 ) |
| 29 |
|
0zd |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → 0 ∈ ℤ ) |
| 30 |
|
cnvimass |
⊢ ( ◡ 𝐴 “ ( ℂ ∖ { 0 } ) ) ⊆ dom 𝐴 |
| 31 |
30 19
|
fssdm |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → ( ◡ 𝐴 “ ( ℂ ∖ { 0 } ) ) ⊆ ℕ0 ) |
| 32 |
1
|
dgrlem |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → ( 𝐴 : ℕ0 ⟶ ( 𝑆 ∪ { 0 } ) ∧ ∃ 𝑛 ∈ ℤ ∀ 𝑥 ∈ ( ◡ 𝐴 “ ( ℂ ∖ { 0 } ) ) 𝑥 ≤ 𝑛 ) ) |
| 33 |
32
|
simprd |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → ∃ 𝑛 ∈ ℤ ∀ 𝑥 ∈ ( ◡ 𝐴 “ ( ℂ ∖ { 0 } ) ) 𝑥 ≤ 𝑛 ) |
| 34 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
| 35 |
34
|
uzsupss |
⊢ ( ( 0 ∈ ℤ ∧ ( ◡ 𝐴 “ ( ℂ ∖ { 0 } ) ) ⊆ ℕ0 ∧ ∃ 𝑛 ∈ ℤ ∀ 𝑥 ∈ ( ◡ 𝐴 “ ( ℂ ∖ { 0 } ) ) 𝑥 ≤ 𝑛 ) → ∃ 𝑛 ∈ ℕ0 ( ∀ 𝑥 ∈ ( ◡ 𝐴 “ ( ℂ ∖ { 0 } ) ) ¬ 𝑛 < 𝑥 ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑥 < 𝑛 → ∃ 𝑦 ∈ ( ◡ 𝐴 “ ( ℂ ∖ { 0 } ) ) 𝑥 < 𝑦 ) ) ) |
| 36 |
29 31 33 35
|
syl3anc |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → ∃ 𝑛 ∈ ℕ0 ( ∀ 𝑥 ∈ ( ◡ 𝐴 “ ( ℂ ∖ { 0 } ) ) ¬ 𝑛 < 𝑥 ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑥 < 𝑛 → ∃ 𝑦 ∈ ( ◡ 𝐴 “ ( ℂ ∖ { 0 } ) ) 𝑥 < 𝑦 ) ) ) |
| 37 |
28 36
|
supub |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → ( 𝑀 ∈ ( ◡ 𝐴 “ ( ℂ ∖ { 0 } ) ) → ¬ sup ( ( ◡ 𝐴 “ ( ℂ ∖ { 0 } ) ) , ℕ0 , < ) < 𝑀 ) ) |
| 38 |
5 23 37
|
sylc |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑀 ∈ ℕ0 ∧ ( 𝐴 ‘ 𝑀 ) ≠ 0 ) → ¬ sup ( ( ◡ 𝐴 “ ( ℂ ∖ { 0 } ) ) , ℕ0 , < ) < 𝑀 ) |
| 39 |
12 38
|
eqnbrtrd |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑀 ∈ ℕ0 ∧ ( 𝐴 ‘ 𝑀 ) ≠ 0 ) → ¬ 𝑁 < 𝑀 ) |
| 40 |
4 9 39
|
nltled |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑀 ∈ ℕ0 ∧ ( 𝐴 ‘ 𝑀 ) ≠ 0 ) → 𝑀 ≤ 𝑁 ) |