Metamath Proof Explorer


Theorem uzsupss

Description: Any bounded subset of an upper set of integers has a supremum. (Contributed by Mario Carneiro, 22-Jul-2014) (Revised by Mario Carneiro, 21-Apr-2015)

Ref Expression
Hypothesis uzsupss.1 𝑍 = ( ℤ𝑀 )
Assertion uzsupss ( ( 𝑀 ∈ ℤ ∧ 𝐴𝑍 ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦𝐴 𝑦𝑥 ) → ∃ 𝑥𝑍 ( ∀ 𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦𝑍 ( 𝑦 < 𝑥 → ∃ 𝑧𝐴 𝑦 < 𝑧 ) ) )

Proof

Step Hyp Ref Expression
1 uzsupss.1 𝑍 = ( ℤ𝑀 )
2 simpl1 ( ( ( 𝑀 ∈ ℤ ∧ 𝐴𝑍 ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦𝐴 𝑦𝑥 ) ∧ 𝐴 = ∅ ) → 𝑀 ∈ ℤ )
3 uzid ( 𝑀 ∈ ℤ → 𝑀 ∈ ( ℤ𝑀 ) )
4 2 3 syl ( ( ( 𝑀 ∈ ℤ ∧ 𝐴𝑍 ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦𝐴 𝑦𝑥 ) ∧ 𝐴 = ∅ ) → 𝑀 ∈ ( ℤ𝑀 ) )
5 4 1 eleqtrrdi ( ( ( 𝑀 ∈ ℤ ∧ 𝐴𝑍 ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦𝐴 𝑦𝑥 ) ∧ 𝐴 = ∅ ) → 𝑀𝑍 )
6 ral0 𝑦 ∈ ∅ ¬ 𝑀 < 𝑦
7 simpr ( ( ( 𝑀 ∈ ℤ ∧ 𝐴𝑍 ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦𝐴 𝑦𝑥 ) ∧ 𝐴 = ∅ ) → 𝐴 = ∅ )
8 7 raleqdv ( ( ( 𝑀 ∈ ℤ ∧ 𝐴𝑍 ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦𝐴 𝑦𝑥 ) ∧ 𝐴 = ∅ ) → ( ∀ 𝑦𝐴 ¬ 𝑀 < 𝑦 ↔ ∀ 𝑦 ∈ ∅ ¬ 𝑀 < 𝑦 ) )
9 6 8 mpbiri ( ( ( 𝑀 ∈ ℤ ∧ 𝐴𝑍 ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦𝐴 𝑦𝑥 ) ∧ 𝐴 = ∅ ) → ∀ 𝑦𝐴 ¬ 𝑀 < 𝑦 )
10 eluzle ( 𝑦 ∈ ( ℤ𝑀 ) → 𝑀𝑦 )
11 eluzel2 ( 𝑦 ∈ ( ℤ𝑀 ) → 𝑀 ∈ ℤ )
12 eluzelz ( 𝑦 ∈ ( ℤ𝑀 ) → 𝑦 ∈ ℤ )
13 zre ( 𝑀 ∈ ℤ → 𝑀 ∈ ℝ )
14 zre ( 𝑦 ∈ ℤ → 𝑦 ∈ ℝ )
15 lenlt ( ( 𝑀 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑀𝑦 ↔ ¬ 𝑦 < 𝑀 ) )
16 13 14 15 syl2an ( ( 𝑀 ∈ ℤ ∧ 𝑦 ∈ ℤ ) → ( 𝑀𝑦 ↔ ¬ 𝑦 < 𝑀 ) )
17 11 12 16 syl2anc ( 𝑦 ∈ ( ℤ𝑀 ) → ( 𝑀𝑦 ↔ ¬ 𝑦 < 𝑀 ) )
18 10 17 mpbid ( 𝑦 ∈ ( ℤ𝑀 ) → ¬ 𝑦 < 𝑀 )
19 18 1 eleq2s ( 𝑦𝑍 → ¬ 𝑦 < 𝑀 )
20 19 pm2.21d ( 𝑦𝑍 → ( 𝑦 < 𝑀 → ∃ 𝑧𝐴 𝑦 < 𝑧 ) )
21 20 rgen 𝑦𝑍 ( 𝑦 < 𝑀 → ∃ 𝑧𝐴 𝑦 < 𝑧 )
22 21 a1i ( ( ( 𝑀 ∈ ℤ ∧ 𝐴𝑍 ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦𝐴 𝑦𝑥 ) ∧ 𝐴 = ∅ ) → ∀ 𝑦𝑍 ( 𝑦 < 𝑀 → ∃ 𝑧𝐴 𝑦 < 𝑧 ) )
23 breq1 ( 𝑥 = 𝑀 → ( 𝑥 < 𝑦𝑀 < 𝑦 ) )
24 23 notbid ( 𝑥 = 𝑀 → ( ¬ 𝑥 < 𝑦 ↔ ¬ 𝑀 < 𝑦 ) )
25 24 ralbidv ( 𝑥 = 𝑀 → ( ∀ 𝑦𝐴 ¬ 𝑥 < 𝑦 ↔ ∀ 𝑦𝐴 ¬ 𝑀 < 𝑦 ) )
26 breq2 ( 𝑥 = 𝑀 → ( 𝑦 < 𝑥𝑦 < 𝑀 ) )
27 26 imbi1d ( 𝑥 = 𝑀 → ( ( 𝑦 < 𝑥 → ∃ 𝑧𝐴 𝑦 < 𝑧 ) ↔ ( 𝑦 < 𝑀 → ∃ 𝑧𝐴 𝑦 < 𝑧 ) ) )
28 27 ralbidv ( 𝑥 = 𝑀 → ( ∀ 𝑦𝑍 ( 𝑦 < 𝑥 → ∃ 𝑧𝐴 𝑦 < 𝑧 ) ↔ ∀ 𝑦𝑍 ( 𝑦 < 𝑀 → ∃ 𝑧𝐴 𝑦 < 𝑧 ) ) )
29 25 28 anbi12d ( 𝑥 = 𝑀 → ( ( ∀ 𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦𝑍 ( 𝑦 < 𝑥 → ∃ 𝑧𝐴 𝑦 < 𝑧 ) ) ↔ ( ∀ 𝑦𝐴 ¬ 𝑀 < 𝑦 ∧ ∀ 𝑦𝑍 ( 𝑦 < 𝑀 → ∃ 𝑧𝐴 𝑦 < 𝑧 ) ) ) )
30 29 rspcev ( ( 𝑀𝑍 ∧ ( ∀ 𝑦𝐴 ¬ 𝑀 < 𝑦 ∧ ∀ 𝑦𝑍 ( 𝑦 < 𝑀 → ∃ 𝑧𝐴 𝑦 < 𝑧 ) ) ) → ∃ 𝑥𝑍 ( ∀ 𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦𝑍 ( 𝑦 < 𝑥 → ∃ 𝑧𝐴 𝑦 < 𝑧 ) ) )
31 5 9 22 30 syl12anc ( ( ( 𝑀 ∈ ℤ ∧ 𝐴𝑍 ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦𝐴 𝑦𝑥 ) ∧ 𝐴 = ∅ ) → ∃ 𝑥𝑍 ( ∀ 𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦𝑍 ( 𝑦 < 𝑥 → ∃ 𝑧𝐴 𝑦 < 𝑧 ) ) )
32 simpl2 ( ( ( 𝑀 ∈ ℤ ∧ 𝐴𝑍 ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦𝐴 𝑦𝑥 ) ∧ 𝐴 ≠ ∅ ) → 𝐴𝑍 )
33 uzssz ( ℤ𝑀 ) ⊆ ℤ
34 1 33 eqsstri 𝑍 ⊆ ℤ
35 32 34 sstrdi ( ( ( 𝑀 ∈ ℤ ∧ 𝐴𝑍 ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦𝐴 𝑦𝑥 ) ∧ 𝐴 ≠ ∅ ) → 𝐴 ⊆ ℤ )
36 simpr ( ( ( 𝑀 ∈ ℤ ∧ 𝐴𝑍 ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦𝐴 𝑦𝑥 ) ∧ 𝐴 ≠ ∅ ) → 𝐴 ≠ ∅ )
37 simpl3 ( ( ( 𝑀 ∈ ℤ ∧ 𝐴𝑍 ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦𝐴 𝑦𝑥 ) ∧ 𝐴 ≠ ∅ ) → ∃ 𝑥 ∈ ℤ ∀ 𝑦𝐴 𝑦𝑥 )
38 zsupss ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦𝐴 𝑦𝑥 ) → ∃ 𝑥𝐴 ( ∀ 𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦𝑍 ( 𝑦 < 𝑥 → ∃ 𝑧𝐴 𝑦 < 𝑧 ) ) )
39 35 36 37 38 syl3anc ( ( ( 𝑀 ∈ ℤ ∧ 𝐴𝑍 ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦𝐴 𝑦𝑥 ) ∧ 𝐴 ≠ ∅ ) → ∃ 𝑥𝐴 ( ∀ 𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦𝑍 ( 𝑦 < 𝑥 → ∃ 𝑧𝐴 𝑦 < 𝑧 ) ) )
40 ssrexv ( 𝐴𝑍 → ( ∃ 𝑥𝐴 ( ∀ 𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦𝑍 ( 𝑦 < 𝑥 → ∃ 𝑧𝐴 𝑦 < 𝑧 ) ) → ∃ 𝑥𝑍 ( ∀ 𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦𝑍 ( 𝑦 < 𝑥 → ∃ 𝑧𝐴 𝑦 < 𝑧 ) ) ) )
41 32 39 40 sylc ( ( ( 𝑀 ∈ ℤ ∧ 𝐴𝑍 ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦𝐴 𝑦𝑥 ) ∧ 𝐴 ≠ ∅ ) → ∃ 𝑥𝑍 ( ∀ 𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦𝑍 ( 𝑦 < 𝑥 → ∃ 𝑧𝐴 𝑦 < 𝑧 ) ) )
42 31 41 pm2.61dane ( ( 𝑀 ∈ ℤ ∧ 𝐴𝑍 ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦𝐴 𝑦𝑥 ) → ∃ 𝑥𝑍 ( ∀ 𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦𝑍 ( 𝑦 < 𝑥 → ∃ 𝑧𝐴 𝑦 < 𝑧 ) ) )