Step |
Hyp |
Ref |
Expression |
1 |
|
uzsupss.1 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
2 |
|
simpl1 |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝐴 ⊆ 𝑍 ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ∧ 𝐴 = ∅ ) → 𝑀 ∈ ℤ ) |
3 |
|
uzid |
⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
4 |
2 3
|
syl |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝐴 ⊆ 𝑍 ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ∧ 𝐴 = ∅ ) → 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
5 |
4 1
|
eleqtrrdi |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝐴 ⊆ 𝑍 ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ∧ 𝐴 = ∅ ) → 𝑀 ∈ 𝑍 ) |
6 |
|
ral0 |
⊢ ∀ 𝑦 ∈ ∅ ¬ 𝑀 < 𝑦 |
7 |
|
simpr |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝐴 ⊆ 𝑍 ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ∧ 𝐴 = ∅ ) → 𝐴 = ∅ ) |
8 |
7
|
raleqdv |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝐴 ⊆ 𝑍 ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ∧ 𝐴 = ∅ ) → ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑀 < 𝑦 ↔ ∀ 𝑦 ∈ ∅ ¬ 𝑀 < 𝑦 ) ) |
9 |
6 8
|
mpbiri |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝐴 ⊆ 𝑍 ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ∧ 𝐴 = ∅ ) → ∀ 𝑦 ∈ 𝐴 ¬ 𝑀 < 𝑦 ) |
10 |
|
eluzle |
⊢ ( 𝑦 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ≤ 𝑦 ) |
11 |
|
eluzel2 |
⊢ ( 𝑦 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ℤ ) |
12 |
|
eluzelz |
⊢ ( 𝑦 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑦 ∈ ℤ ) |
13 |
|
zre |
⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ℝ ) |
14 |
|
zre |
⊢ ( 𝑦 ∈ ℤ → 𝑦 ∈ ℝ ) |
15 |
|
lenlt |
⊢ ( ( 𝑀 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑀 ≤ 𝑦 ↔ ¬ 𝑦 < 𝑀 ) ) |
16 |
13 14 15
|
syl2an |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑦 ∈ ℤ ) → ( 𝑀 ≤ 𝑦 ↔ ¬ 𝑦 < 𝑀 ) ) |
17 |
11 12 16
|
syl2anc |
⊢ ( 𝑦 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑀 ≤ 𝑦 ↔ ¬ 𝑦 < 𝑀 ) ) |
18 |
10 17
|
mpbid |
⊢ ( 𝑦 ∈ ( ℤ≥ ‘ 𝑀 ) → ¬ 𝑦 < 𝑀 ) |
19 |
18 1
|
eleq2s |
⊢ ( 𝑦 ∈ 𝑍 → ¬ 𝑦 < 𝑀 ) |
20 |
19
|
pm2.21d |
⊢ ( 𝑦 ∈ 𝑍 → ( 𝑦 < 𝑀 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) |
21 |
20
|
rgen |
⊢ ∀ 𝑦 ∈ 𝑍 ( 𝑦 < 𝑀 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) |
22 |
21
|
a1i |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝐴 ⊆ 𝑍 ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ∧ 𝐴 = ∅ ) → ∀ 𝑦 ∈ 𝑍 ( 𝑦 < 𝑀 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) |
23 |
|
breq1 |
⊢ ( 𝑥 = 𝑀 → ( 𝑥 < 𝑦 ↔ 𝑀 < 𝑦 ) ) |
24 |
23
|
notbid |
⊢ ( 𝑥 = 𝑀 → ( ¬ 𝑥 < 𝑦 ↔ ¬ 𝑀 < 𝑦 ) ) |
25 |
24
|
ralbidv |
⊢ ( 𝑥 = 𝑀 → ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ↔ ∀ 𝑦 ∈ 𝐴 ¬ 𝑀 < 𝑦 ) ) |
26 |
|
breq2 |
⊢ ( 𝑥 = 𝑀 → ( 𝑦 < 𝑥 ↔ 𝑦 < 𝑀 ) ) |
27 |
26
|
imbi1d |
⊢ ( 𝑥 = 𝑀 → ( ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ↔ ( 𝑦 < 𝑀 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) ) |
28 |
27
|
ralbidv |
⊢ ( 𝑥 = 𝑀 → ( ∀ 𝑦 ∈ 𝑍 ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ↔ ∀ 𝑦 ∈ 𝑍 ( 𝑦 < 𝑀 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) ) |
29 |
25 28
|
anbi12d |
⊢ ( 𝑥 = 𝑀 → ( ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ 𝑍 ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) ↔ ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑀 < 𝑦 ∧ ∀ 𝑦 ∈ 𝑍 ( 𝑦 < 𝑀 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) ) ) |
30 |
29
|
rspcev |
⊢ ( ( 𝑀 ∈ 𝑍 ∧ ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑀 < 𝑦 ∧ ∀ 𝑦 ∈ 𝑍 ( 𝑦 < 𝑀 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) ) → ∃ 𝑥 ∈ 𝑍 ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ 𝑍 ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) ) |
31 |
5 9 22 30
|
syl12anc |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝐴 ⊆ 𝑍 ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ∧ 𝐴 = ∅ ) → ∃ 𝑥 ∈ 𝑍 ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ 𝑍 ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) ) |
32 |
|
simpl2 |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝐴 ⊆ 𝑍 ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ∧ 𝐴 ≠ ∅ ) → 𝐴 ⊆ 𝑍 ) |
33 |
|
uzssz |
⊢ ( ℤ≥ ‘ 𝑀 ) ⊆ ℤ |
34 |
1 33
|
eqsstri |
⊢ 𝑍 ⊆ ℤ |
35 |
32 34
|
sstrdi |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝐴 ⊆ 𝑍 ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ∧ 𝐴 ≠ ∅ ) → 𝐴 ⊆ ℤ ) |
36 |
|
simpr |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝐴 ⊆ 𝑍 ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ∧ 𝐴 ≠ ∅ ) → 𝐴 ≠ ∅ ) |
37 |
|
simpl3 |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝐴 ⊆ 𝑍 ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ∧ 𝐴 ≠ ∅ ) → ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) |
38 |
|
zsupss |
⊢ ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) → ∃ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ 𝑍 ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) ) |
39 |
35 36 37 38
|
syl3anc |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝐴 ⊆ 𝑍 ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ∧ 𝐴 ≠ ∅ ) → ∃ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ 𝑍 ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) ) |
40 |
|
ssrexv |
⊢ ( 𝐴 ⊆ 𝑍 → ( ∃ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ 𝑍 ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) → ∃ 𝑥 ∈ 𝑍 ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ 𝑍 ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) ) ) |
41 |
32 39 40
|
sylc |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝐴 ⊆ 𝑍 ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ∧ 𝐴 ≠ ∅ ) → ∃ 𝑥 ∈ 𝑍 ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ 𝑍 ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) ) |
42 |
31 41
|
pm2.61dane |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐴 ⊆ 𝑍 ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) → ∃ 𝑥 ∈ 𝑍 ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ 𝑍 ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) ) |