Metamath Proof Explorer


Theorem zsupss

Description: Any nonempty bounded subset of integers has a supremum in the set. (The proof does not use ax-pre-sup .) (Contributed by Mario Carneiro, 21-Apr-2015)

Ref Expression
Assertion zsupss ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦𝐴 𝑦𝑥 ) → ∃ 𝑥𝐴 ( ∀ 𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦𝐵 ( 𝑦 < 𝑥 → ∃ 𝑧𝐴 𝑦 < 𝑧 ) ) )

Proof

Step Hyp Ref Expression
1 breq1 ( 𝑦 = 𝑚 → ( 𝑦𝑥𝑚𝑥 ) )
2 1 cbvralvw ( ∀ 𝑦𝐴 𝑦𝑥 ↔ ∀ 𝑚𝐴 𝑚𝑥 )
3 breq2 ( 𝑥 = 𝑛 → ( 𝑚𝑥𝑚𝑛 ) )
4 3 ralbidv ( 𝑥 = 𝑛 → ( ∀ 𝑚𝐴 𝑚𝑥 ↔ ∀ 𝑚𝐴 𝑚𝑛 ) )
5 2 4 syl5bb ( 𝑥 = 𝑛 → ( ∀ 𝑦𝐴 𝑦𝑥 ↔ ∀ 𝑚𝐴 𝑚𝑛 ) )
6 5 cbvrexvw ( ∃ 𝑥 ∈ ℤ ∀ 𝑦𝐴 𝑦𝑥 ↔ ∃ 𝑛 ∈ ℤ ∀ 𝑚𝐴 𝑚𝑛 )
7 simp1rl ( ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚𝐴 𝑚𝑛 ) ) ∧ 𝑤 ∈ ℤ ∧ - 𝑤𝐴 ) → 𝑛 ∈ ℤ )
8 7 znegcld ( ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚𝐴 𝑚𝑛 ) ) ∧ 𝑤 ∈ ℤ ∧ - 𝑤𝐴 ) → - 𝑛 ∈ ℤ )
9 simp2 ( ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚𝐴 𝑚𝑛 ) ) ∧ 𝑤 ∈ ℤ ∧ - 𝑤𝐴 ) → 𝑤 ∈ ℤ )
10 9 zred ( ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚𝐴 𝑚𝑛 ) ) ∧ 𝑤 ∈ ℤ ∧ - 𝑤𝐴 ) → 𝑤 ∈ ℝ )
11 7 zred ( ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚𝐴 𝑚𝑛 ) ) ∧ 𝑤 ∈ ℤ ∧ - 𝑤𝐴 ) → 𝑛 ∈ ℝ )
12 breq1 ( 𝑚 = - 𝑤 → ( 𝑚𝑛 ↔ - 𝑤𝑛 ) )
13 simp1rr ( ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚𝐴 𝑚𝑛 ) ) ∧ 𝑤 ∈ ℤ ∧ - 𝑤𝐴 ) → ∀ 𝑚𝐴 𝑚𝑛 )
14 simp3 ( ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚𝐴 𝑚𝑛 ) ) ∧ 𝑤 ∈ ℤ ∧ - 𝑤𝐴 ) → - 𝑤𝐴 )
15 12 13 14 rspcdva ( ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚𝐴 𝑚𝑛 ) ) ∧ 𝑤 ∈ ℤ ∧ - 𝑤𝐴 ) → - 𝑤𝑛 )
16 10 11 15 lenegcon1d ( ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚𝐴 𝑚𝑛 ) ) ∧ 𝑤 ∈ ℤ ∧ - 𝑤𝐴 ) → - 𝑛𝑤 )
17 eluz2 ( 𝑤 ∈ ( ℤ ‘ - 𝑛 ) ↔ ( - 𝑛 ∈ ℤ ∧ 𝑤 ∈ ℤ ∧ - 𝑛𝑤 ) )
18 8 9 16 17 syl3anbrc ( ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚𝐴 𝑚𝑛 ) ) ∧ 𝑤 ∈ ℤ ∧ - 𝑤𝐴 ) → 𝑤 ∈ ( ℤ ‘ - 𝑛 ) )
19 18 rabssdv ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚𝐴 𝑚𝑛 ) ) → { 𝑤 ∈ ℤ ∣ - 𝑤𝐴 } ⊆ ( ℤ ‘ - 𝑛 ) )
20 n0 ( 𝐴 ≠ ∅ ↔ ∃ 𝑛 𝑛𝐴 )
21 ssel2 ( ( 𝐴 ⊆ ℤ ∧ 𝑛𝐴 ) → 𝑛 ∈ ℤ )
22 21 znegcld ( ( 𝐴 ⊆ ℤ ∧ 𝑛𝐴 ) → - 𝑛 ∈ ℤ )
23 21 zcnd ( ( 𝐴 ⊆ ℤ ∧ 𝑛𝐴 ) → 𝑛 ∈ ℂ )
24 23 negnegd ( ( 𝐴 ⊆ ℤ ∧ 𝑛𝐴 ) → - - 𝑛 = 𝑛 )
25 simpr ( ( 𝐴 ⊆ ℤ ∧ 𝑛𝐴 ) → 𝑛𝐴 )
26 24 25 eqeltrd ( ( 𝐴 ⊆ ℤ ∧ 𝑛𝐴 ) → - - 𝑛𝐴 )
27 negeq ( 𝑤 = - 𝑛 → - 𝑤 = - - 𝑛 )
28 27 eleq1d ( 𝑤 = - 𝑛 → ( - 𝑤𝐴 ↔ - - 𝑛𝐴 ) )
29 28 rspcev ( ( - 𝑛 ∈ ℤ ∧ - - 𝑛𝐴 ) → ∃ 𝑤 ∈ ℤ - 𝑤𝐴 )
30 22 26 29 syl2anc ( ( 𝐴 ⊆ ℤ ∧ 𝑛𝐴 ) → ∃ 𝑤 ∈ ℤ - 𝑤𝐴 )
31 30 ex ( 𝐴 ⊆ ℤ → ( 𝑛𝐴 → ∃ 𝑤 ∈ ℤ - 𝑤𝐴 ) )
32 31 exlimdv ( 𝐴 ⊆ ℤ → ( ∃ 𝑛 𝑛𝐴 → ∃ 𝑤 ∈ ℤ - 𝑤𝐴 ) )
33 32 imp ( ( 𝐴 ⊆ ℤ ∧ ∃ 𝑛 𝑛𝐴 ) → ∃ 𝑤 ∈ ℤ - 𝑤𝐴 )
34 20 33 sylan2b ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) → ∃ 𝑤 ∈ ℤ - 𝑤𝐴 )
35 34 adantr ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚𝐴 𝑚𝑛 ) ) → ∃ 𝑤 ∈ ℤ - 𝑤𝐴 )
36 rabn0 ( { 𝑤 ∈ ℤ ∣ - 𝑤𝐴 } ≠ ∅ ↔ ∃ 𝑤 ∈ ℤ - 𝑤𝐴 )
37 35 36 sylibr ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚𝐴 𝑚𝑛 ) ) → { 𝑤 ∈ ℤ ∣ - 𝑤𝐴 } ≠ ∅ )
38 infssuzcl ( ( { 𝑤 ∈ ℤ ∣ - 𝑤𝐴 } ⊆ ( ℤ ‘ - 𝑛 ) ∧ { 𝑤 ∈ ℤ ∣ - 𝑤𝐴 } ≠ ∅ ) → inf ( { 𝑤 ∈ ℤ ∣ - 𝑤𝐴 } , ℝ , < ) ∈ { 𝑤 ∈ ℤ ∣ - 𝑤𝐴 } )
39 19 37 38 syl2anc ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚𝐴 𝑚𝑛 ) ) → inf ( { 𝑤 ∈ ℤ ∣ - 𝑤𝐴 } , ℝ , < ) ∈ { 𝑤 ∈ ℤ ∣ - 𝑤𝐴 } )
40 negeq ( 𝑛 = inf ( { 𝑤 ∈ ℤ ∣ - 𝑤𝐴 } , ℝ , < ) → - 𝑛 = - inf ( { 𝑤 ∈ ℤ ∣ - 𝑤𝐴 } , ℝ , < ) )
41 40 eleq1d ( 𝑛 = inf ( { 𝑤 ∈ ℤ ∣ - 𝑤𝐴 } , ℝ , < ) → ( - 𝑛𝐴 ↔ - inf ( { 𝑤 ∈ ℤ ∣ - 𝑤𝐴 } , ℝ , < ) ∈ 𝐴 ) )
42 negeq ( 𝑤 = 𝑛 → - 𝑤 = - 𝑛 )
43 42 eleq1d ( 𝑤 = 𝑛 → ( - 𝑤𝐴 ↔ - 𝑛𝐴 ) )
44 43 cbvrabv { 𝑤 ∈ ℤ ∣ - 𝑤𝐴 } = { 𝑛 ∈ ℤ ∣ - 𝑛𝐴 }
45 41 44 elrab2 ( inf ( { 𝑤 ∈ ℤ ∣ - 𝑤𝐴 } , ℝ , < ) ∈ { 𝑤 ∈ ℤ ∣ - 𝑤𝐴 } ↔ ( inf ( { 𝑤 ∈ ℤ ∣ - 𝑤𝐴 } , ℝ , < ) ∈ ℤ ∧ - inf ( { 𝑤 ∈ ℤ ∣ - 𝑤𝐴 } , ℝ , < ) ∈ 𝐴 ) )
46 45 simprbi ( inf ( { 𝑤 ∈ ℤ ∣ - 𝑤𝐴 } , ℝ , < ) ∈ { 𝑤 ∈ ℤ ∣ - 𝑤𝐴 } → - inf ( { 𝑤 ∈ ℤ ∣ - 𝑤𝐴 } , ℝ , < ) ∈ 𝐴 )
47 39 46 syl ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚𝐴 𝑚𝑛 ) ) → - inf ( { 𝑤 ∈ ℤ ∣ - 𝑤𝐴 } , ℝ , < ) ∈ 𝐴 )
48 simpll ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚𝐴 𝑚𝑛 ) ) → 𝐴 ⊆ ℤ )
49 48 sselda ( ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚𝐴 𝑚𝑛 ) ) ∧ 𝑦𝐴 ) → 𝑦 ∈ ℤ )
50 49 zred ( ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚𝐴 𝑚𝑛 ) ) ∧ 𝑦𝐴 ) → 𝑦 ∈ ℝ )
51 ssrab2 { 𝑤 ∈ ℤ ∣ - 𝑤𝐴 } ⊆ ℤ
52 39 adantr ( ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚𝐴 𝑚𝑛 ) ) ∧ 𝑦𝐴 ) → inf ( { 𝑤 ∈ ℤ ∣ - 𝑤𝐴 } , ℝ , < ) ∈ { 𝑤 ∈ ℤ ∣ - 𝑤𝐴 } )
53 51 52 sselid ( ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚𝐴 𝑚𝑛 ) ) ∧ 𝑦𝐴 ) → inf ( { 𝑤 ∈ ℤ ∣ - 𝑤𝐴 } , ℝ , < ) ∈ ℤ )
54 53 znegcld ( ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚𝐴 𝑚𝑛 ) ) ∧ 𝑦𝐴 ) → - inf ( { 𝑤 ∈ ℤ ∣ - 𝑤𝐴 } , ℝ , < ) ∈ ℤ )
55 54 zred ( ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚𝐴 𝑚𝑛 ) ) ∧ 𝑦𝐴 ) → - inf ( { 𝑤 ∈ ℤ ∣ - 𝑤𝐴 } , ℝ , < ) ∈ ℝ )
56 53 zred ( ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚𝐴 𝑚𝑛 ) ) ∧ 𝑦𝐴 ) → inf ( { 𝑤 ∈ ℤ ∣ - 𝑤𝐴 } , ℝ , < ) ∈ ℝ )
57 19 adantr ( ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚𝐴 𝑚𝑛 ) ) ∧ 𝑦𝐴 ) → { 𝑤 ∈ ℤ ∣ - 𝑤𝐴 } ⊆ ( ℤ ‘ - 𝑛 ) )
58 negeq ( 𝑤 = - 𝑦 → - 𝑤 = - - 𝑦 )
59 58 eleq1d ( 𝑤 = - 𝑦 → ( - 𝑤𝐴 ↔ - - 𝑦𝐴 ) )
60 49 znegcld ( ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚𝐴 𝑚𝑛 ) ) ∧ 𝑦𝐴 ) → - 𝑦 ∈ ℤ )
61 49 zcnd ( ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚𝐴 𝑚𝑛 ) ) ∧ 𝑦𝐴 ) → 𝑦 ∈ ℂ )
62 61 negnegd ( ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚𝐴 𝑚𝑛 ) ) ∧ 𝑦𝐴 ) → - - 𝑦 = 𝑦 )
63 simpr ( ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚𝐴 𝑚𝑛 ) ) ∧ 𝑦𝐴 ) → 𝑦𝐴 )
64 62 63 eqeltrd ( ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚𝐴 𝑚𝑛 ) ) ∧ 𝑦𝐴 ) → - - 𝑦𝐴 )
65 59 60 64 elrabd ( ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚𝐴 𝑚𝑛 ) ) ∧ 𝑦𝐴 ) → - 𝑦 ∈ { 𝑤 ∈ ℤ ∣ - 𝑤𝐴 } )
66 infssuzle ( ( { 𝑤 ∈ ℤ ∣ - 𝑤𝐴 } ⊆ ( ℤ ‘ - 𝑛 ) ∧ - 𝑦 ∈ { 𝑤 ∈ ℤ ∣ - 𝑤𝐴 } ) → inf ( { 𝑤 ∈ ℤ ∣ - 𝑤𝐴 } , ℝ , < ) ≤ - 𝑦 )
67 57 65 66 syl2anc ( ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚𝐴 𝑚𝑛 ) ) ∧ 𝑦𝐴 ) → inf ( { 𝑤 ∈ ℤ ∣ - 𝑤𝐴 } , ℝ , < ) ≤ - 𝑦 )
68 56 50 67 lenegcon2d ( ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚𝐴 𝑚𝑛 ) ) ∧ 𝑦𝐴 ) → 𝑦 ≤ - inf ( { 𝑤 ∈ ℤ ∣ - 𝑤𝐴 } , ℝ , < ) )
69 50 55 68 lensymd ( ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚𝐴 𝑚𝑛 ) ) ∧ 𝑦𝐴 ) → ¬ - inf ( { 𝑤 ∈ ℤ ∣ - 𝑤𝐴 } , ℝ , < ) < 𝑦 )
70 69 ralrimiva ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚𝐴 𝑚𝑛 ) ) → ∀ 𝑦𝐴 ¬ - inf ( { 𝑤 ∈ ℤ ∣ - 𝑤𝐴 } , ℝ , < ) < 𝑦 )
71 breq2 ( 𝑧 = - inf ( { 𝑤 ∈ ℤ ∣ - 𝑤𝐴 } , ℝ , < ) → ( 𝑦 < 𝑧𝑦 < - inf ( { 𝑤 ∈ ℤ ∣ - 𝑤𝐴 } , ℝ , < ) ) )
72 71 rspcev ( ( - inf ( { 𝑤 ∈ ℤ ∣ - 𝑤𝐴 } , ℝ , < ) ∈ 𝐴𝑦 < - inf ( { 𝑤 ∈ ℤ ∣ - 𝑤𝐴 } , ℝ , < ) ) → ∃ 𝑧𝐴 𝑦 < 𝑧 )
73 72 ex ( - inf ( { 𝑤 ∈ ℤ ∣ - 𝑤𝐴 } , ℝ , < ) ∈ 𝐴 → ( 𝑦 < - inf ( { 𝑤 ∈ ℤ ∣ - 𝑤𝐴 } , ℝ , < ) → ∃ 𝑧𝐴 𝑦 < 𝑧 ) )
74 47 73 syl ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚𝐴 𝑚𝑛 ) ) → ( 𝑦 < - inf ( { 𝑤 ∈ ℤ ∣ - 𝑤𝐴 } , ℝ , < ) → ∃ 𝑧𝐴 𝑦 < 𝑧 ) )
75 74 ralrimivw ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚𝐴 𝑚𝑛 ) ) → ∀ 𝑦𝐵 ( 𝑦 < - inf ( { 𝑤 ∈ ℤ ∣ - 𝑤𝐴 } , ℝ , < ) → ∃ 𝑧𝐴 𝑦 < 𝑧 ) )
76 breq1 ( 𝑥 = - inf ( { 𝑤 ∈ ℤ ∣ - 𝑤𝐴 } , ℝ , < ) → ( 𝑥 < 𝑦 ↔ - inf ( { 𝑤 ∈ ℤ ∣ - 𝑤𝐴 } , ℝ , < ) < 𝑦 ) )
77 76 notbid ( 𝑥 = - inf ( { 𝑤 ∈ ℤ ∣ - 𝑤𝐴 } , ℝ , < ) → ( ¬ 𝑥 < 𝑦 ↔ ¬ - inf ( { 𝑤 ∈ ℤ ∣ - 𝑤𝐴 } , ℝ , < ) < 𝑦 ) )
78 77 ralbidv ( 𝑥 = - inf ( { 𝑤 ∈ ℤ ∣ - 𝑤𝐴 } , ℝ , < ) → ( ∀ 𝑦𝐴 ¬ 𝑥 < 𝑦 ↔ ∀ 𝑦𝐴 ¬ - inf ( { 𝑤 ∈ ℤ ∣ - 𝑤𝐴 } , ℝ , < ) < 𝑦 ) )
79 breq2 ( 𝑥 = - inf ( { 𝑤 ∈ ℤ ∣ - 𝑤𝐴 } , ℝ , < ) → ( 𝑦 < 𝑥𝑦 < - inf ( { 𝑤 ∈ ℤ ∣ - 𝑤𝐴 } , ℝ , < ) ) )
80 79 imbi1d ( 𝑥 = - inf ( { 𝑤 ∈ ℤ ∣ - 𝑤𝐴 } , ℝ , < ) → ( ( 𝑦 < 𝑥 → ∃ 𝑧𝐴 𝑦 < 𝑧 ) ↔ ( 𝑦 < - inf ( { 𝑤 ∈ ℤ ∣ - 𝑤𝐴 } , ℝ , < ) → ∃ 𝑧𝐴 𝑦 < 𝑧 ) ) )
81 80 ralbidv ( 𝑥 = - inf ( { 𝑤 ∈ ℤ ∣ - 𝑤𝐴 } , ℝ , < ) → ( ∀ 𝑦𝐵 ( 𝑦 < 𝑥 → ∃ 𝑧𝐴 𝑦 < 𝑧 ) ↔ ∀ 𝑦𝐵 ( 𝑦 < - inf ( { 𝑤 ∈ ℤ ∣ - 𝑤𝐴 } , ℝ , < ) → ∃ 𝑧𝐴 𝑦 < 𝑧 ) ) )
82 78 81 anbi12d ( 𝑥 = - inf ( { 𝑤 ∈ ℤ ∣ - 𝑤𝐴 } , ℝ , < ) → ( ( ∀ 𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦𝐵 ( 𝑦 < 𝑥 → ∃ 𝑧𝐴 𝑦 < 𝑧 ) ) ↔ ( ∀ 𝑦𝐴 ¬ - inf ( { 𝑤 ∈ ℤ ∣ - 𝑤𝐴 } , ℝ , < ) < 𝑦 ∧ ∀ 𝑦𝐵 ( 𝑦 < - inf ( { 𝑤 ∈ ℤ ∣ - 𝑤𝐴 } , ℝ , < ) → ∃ 𝑧𝐴 𝑦 < 𝑧 ) ) ) )
83 82 rspcev ( ( - inf ( { 𝑤 ∈ ℤ ∣ - 𝑤𝐴 } , ℝ , < ) ∈ 𝐴 ∧ ( ∀ 𝑦𝐴 ¬ - inf ( { 𝑤 ∈ ℤ ∣ - 𝑤𝐴 } , ℝ , < ) < 𝑦 ∧ ∀ 𝑦𝐵 ( 𝑦 < - inf ( { 𝑤 ∈ ℤ ∣ - 𝑤𝐴 } , ℝ , < ) → ∃ 𝑧𝐴 𝑦 < 𝑧 ) ) ) → ∃ 𝑥𝐴 ( ∀ 𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦𝐵 ( 𝑦 < 𝑥 → ∃ 𝑧𝐴 𝑦 < 𝑧 ) ) )
84 47 70 75 83 syl12anc ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚𝐴 𝑚𝑛 ) ) → ∃ 𝑥𝐴 ( ∀ 𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦𝐵 ( 𝑦 < 𝑥 → ∃ 𝑧𝐴 𝑦 < 𝑧 ) ) )
85 84 rexlimdvaa ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) → ( ∃ 𝑛 ∈ ℤ ∀ 𝑚𝐴 𝑚𝑛 → ∃ 𝑥𝐴 ( ∀ 𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦𝐵 ( 𝑦 < 𝑥 → ∃ 𝑧𝐴 𝑦 < 𝑧 ) ) ) )
86 6 85 syl5bi ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) → ( ∃ 𝑥 ∈ ℤ ∀ 𝑦𝐴 𝑦𝑥 → ∃ 𝑥𝐴 ( ∀ 𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦𝐵 ( 𝑦 < 𝑥 → ∃ 𝑧𝐴 𝑦 < 𝑧 ) ) ) )
87 86 3impia ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦𝐴 𝑦𝑥 ) → ∃ 𝑥𝐴 ( ∀ 𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦𝐵 ( 𝑦 < 𝑥 → ∃ 𝑧𝐴 𝑦 < 𝑧 ) ) )