Step |
Hyp |
Ref |
Expression |
1 |
|
breq1 |
⊢ ( 𝑦 = 𝑚 → ( 𝑦 ≤ 𝑥 ↔ 𝑚 ≤ 𝑥 ) ) |
2 |
1
|
cbvralvw |
⊢ ( ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ↔ ∀ 𝑚 ∈ 𝐴 𝑚 ≤ 𝑥 ) |
3 |
|
breq2 |
⊢ ( 𝑥 = 𝑛 → ( 𝑚 ≤ 𝑥 ↔ 𝑚 ≤ 𝑛 ) ) |
4 |
3
|
ralbidv |
⊢ ( 𝑥 = 𝑛 → ( ∀ 𝑚 ∈ 𝐴 𝑚 ≤ 𝑥 ↔ ∀ 𝑚 ∈ 𝐴 𝑚 ≤ 𝑛 ) ) |
5 |
2 4
|
syl5bb |
⊢ ( 𝑥 = 𝑛 → ( ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ↔ ∀ 𝑚 ∈ 𝐴 𝑚 ≤ 𝑛 ) ) |
6 |
5
|
cbvrexvw |
⊢ ( ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ↔ ∃ 𝑛 ∈ ℤ ∀ 𝑚 ∈ 𝐴 𝑚 ≤ 𝑛 ) |
7 |
|
simp1rl |
⊢ ( ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚 ∈ 𝐴 𝑚 ≤ 𝑛 ) ) ∧ 𝑤 ∈ ℤ ∧ - 𝑤 ∈ 𝐴 ) → 𝑛 ∈ ℤ ) |
8 |
7
|
znegcld |
⊢ ( ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚 ∈ 𝐴 𝑚 ≤ 𝑛 ) ) ∧ 𝑤 ∈ ℤ ∧ - 𝑤 ∈ 𝐴 ) → - 𝑛 ∈ ℤ ) |
9 |
|
simp2 |
⊢ ( ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚 ∈ 𝐴 𝑚 ≤ 𝑛 ) ) ∧ 𝑤 ∈ ℤ ∧ - 𝑤 ∈ 𝐴 ) → 𝑤 ∈ ℤ ) |
10 |
9
|
zred |
⊢ ( ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚 ∈ 𝐴 𝑚 ≤ 𝑛 ) ) ∧ 𝑤 ∈ ℤ ∧ - 𝑤 ∈ 𝐴 ) → 𝑤 ∈ ℝ ) |
11 |
7
|
zred |
⊢ ( ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚 ∈ 𝐴 𝑚 ≤ 𝑛 ) ) ∧ 𝑤 ∈ ℤ ∧ - 𝑤 ∈ 𝐴 ) → 𝑛 ∈ ℝ ) |
12 |
|
breq1 |
⊢ ( 𝑚 = - 𝑤 → ( 𝑚 ≤ 𝑛 ↔ - 𝑤 ≤ 𝑛 ) ) |
13 |
|
simp1rr |
⊢ ( ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚 ∈ 𝐴 𝑚 ≤ 𝑛 ) ) ∧ 𝑤 ∈ ℤ ∧ - 𝑤 ∈ 𝐴 ) → ∀ 𝑚 ∈ 𝐴 𝑚 ≤ 𝑛 ) |
14 |
|
simp3 |
⊢ ( ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚 ∈ 𝐴 𝑚 ≤ 𝑛 ) ) ∧ 𝑤 ∈ ℤ ∧ - 𝑤 ∈ 𝐴 ) → - 𝑤 ∈ 𝐴 ) |
15 |
12 13 14
|
rspcdva |
⊢ ( ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚 ∈ 𝐴 𝑚 ≤ 𝑛 ) ) ∧ 𝑤 ∈ ℤ ∧ - 𝑤 ∈ 𝐴 ) → - 𝑤 ≤ 𝑛 ) |
16 |
10 11 15
|
lenegcon1d |
⊢ ( ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚 ∈ 𝐴 𝑚 ≤ 𝑛 ) ) ∧ 𝑤 ∈ ℤ ∧ - 𝑤 ∈ 𝐴 ) → - 𝑛 ≤ 𝑤 ) |
17 |
|
eluz2 |
⊢ ( 𝑤 ∈ ( ℤ≥ ‘ - 𝑛 ) ↔ ( - 𝑛 ∈ ℤ ∧ 𝑤 ∈ ℤ ∧ - 𝑛 ≤ 𝑤 ) ) |
18 |
8 9 16 17
|
syl3anbrc |
⊢ ( ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚 ∈ 𝐴 𝑚 ≤ 𝑛 ) ) ∧ 𝑤 ∈ ℤ ∧ - 𝑤 ∈ 𝐴 ) → 𝑤 ∈ ( ℤ≥ ‘ - 𝑛 ) ) |
19 |
18
|
rabssdv |
⊢ ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚 ∈ 𝐴 𝑚 ≤ 𝑛 ) ) → { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } ⊆ ( ℤ≥ ‘ - 𝑛 ) ) |
20 |
|
n0 |
⊢ ( 𝐴 ≠ ∅ ↔ ∃ 𝑛 𝑛 ∈ 𝐴 ) |
21 |
|
ssel2 |
⊢ ( ( 𝐴 ⊆ ℤ ∧ 𝑛 ∈ 𝐴 ) → 𝑛 ∈ ℤ ) |
22 |
21
|
znegcld |
⊢ ( ( 𝐴 ⊆ ℤ ∧ 𝑛 ∈ 𝐴 ) → - 𝑛 ∈ ℤ ) |
23 |
21
|
zcnd |
⊢ ( ( 𝐴 ⊆ ℤ ∧ 𝑛 ∈ 𝐴 ) → 𝑛 ∈ ℂ ) |
24 |
23
|
negnegd |
⊢ ( ( 𝐴 ⊆ ℤ ∧ 𝑛 ∈ 𝐴 ) → - - 𝑛 = 𝑛 ) |
25 |
|
simpr |
⊢ ( ( 𝐴 ⊆ ℤ ∧ 𝑛 ∈ 𝐴 ) → 𝑛 ∈ 𝐴 ) |
26 |
24 25
|
eqeltrd |
⊢ ( ( 𝐴 ⊆ ℤ ∧ 𝑛 ∈ 𝐴 ) → - - 𝑛 ∈ 𝐴 ) |
27 |
|
negeq |
⊢ ( 𝑤 = - 𝑛 → - 𝑤 = - - 𝑛 ) |
28 |
27
|
eleq1d |
⊢ ( 𝑤 = - 𝑛 → ( - 𝑤 ∈ 𝐴 ↔ - - 𝑛 ∈ 𝐴 ) ) |
29 |
28
|
rspcev |
⊢ ( ( - 𝑛 ∈ ℤ ∧ - - 𝑛 ∈ 𝐴 ) → ∃ 𝑤 ∈ ℤ - 𝑤 ∈ 𝐴 ) |
30 |
22 26 29
|
syl2anc |
⊢ ( ( 𝐴 ⊆ ℤ ∧ 𝑛 ∈ 𝐴 ) → ∃ 𝑤 ∈ ℤ - 𝑤 ∈ 𝐴 ) |
31 |
30
|
ex |
⊢ ( 𝐴 ⊆ ℤ → ( 𝑛 ∈ 𝐴 → ∃ 𝑤 ∈ ℤ - 𝑤 ∈ 𝐴 ) ) |
32 |
31
|
exlimdv |
⊢ ( 𝐴 ⊆ ℤ → ( ∃ 𝑛 𝑛 ∈ 𝐴 → ∃ 𝑤 ∈ ℤ - 𝑤 ∈ 𝐴 ) ) |
33 |
32
|
imp |
⊢ ( ( 𝐴 ⊆ ℤ ∧ ∃ 𝑛 𝑛 ∈ 𝐴 ) → ∃ 𝑤 ∈ ℤ - 𝑤 ∈ 𝐴 ) |
34 |
20 33
|
sylan2b |
⊢ ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) → ∃ 𝑤 ∈ ℤ - 𝑤 ∈ 𝐴 ) |
35 |
34
|
adantr |
⊢ ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚 ∈ 𝐴 𝑚 ≤ 𝑛 ) ) → ∃ 𝑤 ∈ ℤ - 𝑤 ∈ 𝐴 ) |
36 |
|
rabn0 |
⊢ ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } ≠ ∅ ↔ ∃ 𝑤 ∈ ℤ - 𝑤 ∈ 𝐴 ) |
37 |
35 36
|
sylibr |
⊢ ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚 ∈ 𝐴 𝑚 ≤ 𝑛 ) ) → { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } ≠ ∅ ) |
38 |
|
infssuzcl |
⊢ ( ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } ⊆ ( ℤ≥ ‘ - 𝑛 ) ∧ { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } ≠ ∅ ) → inf ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } , ℝ , < ) ∈ { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } ) |
39 |
19 37 38
|
syl2anc |
⊢ ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚 ∈ 𝐴 𝑚 ≤ 𝑛 ) ) → inf ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } , ℝ , < ) ∈ { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } ) |
40 |
|
negeq |
⊢ ( 𝑛 = inf ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } , ℝ , < ) → - 𝑛 = - inf ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } , ℝ , < ) ) |
41 |
40
|
eleq1d |
⊢ ( 𝑛 = inf ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } , ℝ , < ) → ( - 𝑛 ∈ 𝐴 ↔ - inf ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } , ℝ , < ) ∈ 𝐴 ) ) |
42 |
|
negeq |
⊢ ( 𝑤 = 𝑛 → - 𝑤 = - 𝑛 ) |
43 |
42
|
eleq1d |
⊢ ( 𝑤 = 𝑛 → ( - 𝑤 ∈ 𝐴 ↔ - 𝑛 ∈ 𝐴 ) ) |
44 |
43
|
cbvrabv |
⊢ { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } = { 𝑛 ∈ ℤ ∣ - 𝑛 ∈ 𝐴 } |
45 |
41 44
|
elrab2 |
⊢ ( inf ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } , ℝ , < ) ∈ { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } ↔ ( inf ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } , ℝ , < ) ∈ ℤ ∧ - inf ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } , ℝ , < ) ∈ 𝐴 ) ) |
46 |
45
|
simprbi |
⊢ ( inf ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } , ℝ , < ) ∈ { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } → - inf ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } , ℝ , < ) ∈ 𝐴 ) |
47 |
39 46
|
syl |
⊢ ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚 ∈ 𝐴 𝑚 ≤ 𝑛 ) ) → - inf ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } , ℝ , < ) ∈ 𝐴 ) |
48 |
|
simpll |
⊢ ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚 ∈ 𝐴 𝑚 ≤ 𝑛 ) ) → 𝐴 ⊆ ℤ ) |
49 |
48
|
sselda |
⊢ ( ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚 ∈ 𝐴 𝑚 ≤ 𝑛 ) ) ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ∈ ℤ ) |
50 |
49
|
zred |
⊢ ( ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚 ∈ 𝐴 𝑚 ≤ 𝑛 ) ) ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ∈ ℝ ) |
51 |
|
ssrab2 |
⊢ { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } ⊆ ℤ |
52 |
39
|
adantr |
⊢ ( ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚 ∈ 𝐴 𝑚 ≤ 𝑛 ) ) ∧ 𝑦 ∈ 𝐴 ) → inf ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } , ℝ , < ) ∈ { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } ) |
53 |
51 52
|
sselid |
⊢ ( ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚 ∈ 𝐴 𝑚 ≤ 𝑛 ) ) ∧ 𝑦 ∈ 𝐴 ) → inf ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } , ℝ , < ) ∈ ℤ ) |
54 |
53
|
znegcld |
⊢ ( ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚 ∈ 𝐴 𝑚 ≤ 𝑛 ) ) ∧ 𝑦 ∈ 𝐴 ) → - inf ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } , ℝ , < ) ∈ ℤ ) |
55 |
54
|
zred |
⊢ ( ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚 ∈ 𝐴 𝑚 ≤ 𝑛 ) ) ∧ 𝑦 ∈ 𝐴 ) → - inf ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } , ℝ , < ) ∈ ℝ ) |
56 |
53
|
zred |
⊢ ( ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚 ∈ 𝐴 𝑚 ≤ 𝑛 ) ) ∧ 𝑦 ∈ 𝐴 ) → inf ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } , ℝ , < ) ∈ ℝ ) |
57 |
19
|
adantr |
⊢ ( ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚 ∈ 𝐴 𝑚 ≤ 𝑛 ) ) ∧ 𝑦 ∈ 𝐴 ) → { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } ⊆ ( ℤ≥ ‘ - 𝑛 ) ) |
58 |
|
negeq |
⊢ ( 𝑤 = - 𝑦 → - 𝑤 = - - 𝑦 ) |
59 |
58
|
eleq1d |
⊢ ( 𝑤 = - 𝑦 → ( - 𝑤 ∈ 𝐴 ↔ - - 𝑦 ∈ 𝐴 ) ) |
60 |
49
|
znegcld |
⊢ ( ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚 ∈ 𝐴 𝑚 ≤ 𝑛 ) ) ∧ 𝑦 ∈ 𝐴 ) → - 𝑦 ∈ ℤ ) |
61 |
49
|
zcnd |
⊢ ( ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚 ∈ 𝐴 𝑚 ≤ 𝑛 ) ) ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ∈ ℂ ) |
62 |
61
|
negnegd |
⊢ ( ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚 ∈ 𝐴 𝑚 ≤ 𝑛 ) ) ∧ 𝑦 ∈ 𝐴 ) → - - 𝑦 = 𝑦 ) |
63 |
|
simpr |
⊢ ( ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚 ∈ 𝐴 𝑚 ≤ 𝑛 ) ) ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ∈ 𝐴 ) |
64 |
62 63
|
eqeltrd |
⊢ ( ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚 ∈ 𝐴 𝑚 ≤ 𝑛 ) ) ∧ 𝑦 ∈ 𝐴 ) → - - 𝑦 ∈ 𝐴 ) |
65 |
59 60 64
|
elrabd |
⊢ ( ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚 ∈ 𝐴 𝑚 ≤ 𝑛 ) ) ∧ 𝑦 ∈ 𝐴 ) → - 𝑦 ∈ { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } ) |
66 |
|
infssuzle |
⊢ ( ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } ⊆ ( ℤ≥ ‘ - 𝑛 ) ∧ - 𝑦 ∈ { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } ) → inf ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } , ℝ , < ) ≤ - 𝑦 ) |
67 |
57 65 66
|
syl2anc |
⊢ ( ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚 ∈ 𝐴 𝑚 ≤ 𝑛 ) ) ∧ 𝑦 ∈ 𝐴 ) → inf ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } , ℝ , < ) ≤ - 𝑦 ) |
68 |
56 50 67
|
lenegcon2d |
⊢ ( ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚 ∈ 𝐴 𝑚 ≤ 𝑛 ) ) ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ≤ - inf ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } , ℝ , < ) ) |
69 |
50 55 68
|
lensymd |
⊢ ( ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚 ∈ 𝐴 𝑚 ≤ 𝑛 ) ) ∧ 𝑦 ∈ 𝐴 ) → ¬ - inf ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } , ℝ , < ) < 𝑦 ) |
70 |
69
|
ralrimiva |
⊢ ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚 ∈ 𝐴 𝑚 ≤ 𝑛 ) ) → ∀ 𝑦 ∈ 𝐴 ¬ - inf ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } , ℝ , < ) < 𝑦 ) |
71 |
|
breq2 |
⊢ ( 𝑧 = - inf ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } , ℝ , < ) → ( 𝑦 < 𝑧 ↔ 𝑦 < - inf ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } , ℝ , < ) ) ) |
72 |
71
|
rspcev |
⊢ ( ( - inf ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } , ℝ , < ) ∈ 𝐴 ∧ 𝑦 < - inf ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } , ℝ , < ) ) → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) |
73 |
72
|
ex |
⊢ ( - inf ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } , ℝ , < ) ∈ 𝐴 → ( 𝑦 < - inf ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } , ℝ , < ) → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) |
74 |
47 73
|
syl |
⊢ ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚 ∈ 𝐴 𝑚 ≤ 𝑛 ) ) → ( 𝑦 < - inf ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } , ℝ , < ) → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) |
75 |
74
|
ralrimivw |
⊢ ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚 ∈ 𝐴 𝑚 ≤ 𝑛 ) ) → ∀ 𝑦 ∈ 𝐵 ( 𝑦 < - inf ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } , ℝ , < ) → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) |
76 |
|
breq1 |
⊢ ( 𝑥 = - inf ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } , ℝ , < ) → ( 𝑥 < 𝑦 ↔ - inf ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } , ℝ , < ) < 𝑦 ) ) |
77 |
76
|
notbid |
⊢ ( 𝑥 = - inf ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } , ℝ , < ) → ( ¬ 𝑥 < 𝑦 ↔ ¬ - inf ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } , ℝ , < ) < 𝑦 ) ) |
78 |
77
|
ralbidv |
⊢ ( 𝑥 = - inf ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } , ℝ , < ) → ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ↔ ∀ 𝑦 ∈ 𝐴 ¬ - inf ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } , ℝ , < ) < 𝑦 ) ) |
79 |
|
breq2 |
⊢ ( 𝑥 = - inf ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } , ℝ , < ) → ( 𝑦 < 𝑥 ↔ 𝑦 < - inf ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } , ℝ , < ) ) ) |
80 |
79
|
imbi1d |
⊢ ( 𝑥 = - inf ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } , ℝ , < ) → ( ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ↔ ( 𝑦 < - inf ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } , ℝ , < ) → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) ) |
81 |
80
|
ralbidv |
⊢ ( 𝑥 = - inf ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } , ℝ , < ) → ( ∀ 𝑦 ∈ 𝐵 ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ↔ ∀ 𝑦 ∈ 𝐵 ( 𝑦 < - inf ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } , ℝ , < ) → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) ) |
82 |
78 81
|
anbi12d |
⊢ ( 𝑥 = - inf ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } , ℝ , < ) → ( ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) ↔ ( ∀ 𝑦 ∈ 𝐴 ¬ - inf ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } , ℝ , < ) < 𝑦 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑦 < - inf ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } , ℝ , < ) → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) ) ) |
83 |
82
|
rspcev |
⊢ ( ( - inf ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } , ℝ , < ) ∈ 𝐴 ∧ ( ∀ 𝑦 ∈ 𝐴 ¬ - inf ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } , ℝ , < ) < 𝑦 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑦 < - inf ( { 𝑤 ∈ ℤ ∣ - 𝑤 ∈ 𝐴 } , ℝ , < ) → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) ) → ∃ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) ) |
84 |
47 70 75 83
|
syl12anc |
⊢ ( ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) ∧ ( 𝑛 ∈ ℤ ∧ ∀ 𝑚 ∈ 𝐴 𝑚 ≤ 𝑛 ) ) → ∃ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) ) |
85 |
84
|
rexlimdvaa |
⊢ ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) → ( ∃ 𝑛 ∈ ℤ ∀ 𝑚 ∈ 𝐴 𝑚 ≤ 𝑛 → ∃ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) ) ) |
86 |
6 85
|
syl5bi |
⊢ ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ) → ( ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 → ∃ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) ) ) |
87 |
86
|
3impia |
⊢ ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) → ∃ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) ) |