| Step | Hyp | Ref | Expression | 
						
							| 1 |  | breq1 | ⊢ ( 𝑦  =  𝑚  →  ( 𝑦  ≤  𝑥  ↔  𝑚  ≤  𝑥 ) ) | 
						
							| 2 | 1 | cbvralvw | ⊢ ( ∀ 𝑦  ∈  𝐴 𝑦  ≤  𝑥  ↔  ∀ 𝑚  ∈  𝐴 𝑚  ≤  𝑥 ) | 
						
							| 3 |  | breq2 | ⊢ ( 𝑥  =  𝑛  →  ( 𝑚  ≤  𝑥  ↔  𝑚  ≤  𝑛 ) ) | 
						
							| 4 | 3 | ralbidv | ⊢ ( 𝑥  =  𝑛  →  ( ∀ 𝑚  ∈  𝐴 𝑚  ≤  𝑥  ↔  ∀ 𝑚  ∈  𝐴 𝑚  ≤  𝑛 ) ) | 
						
							| 5 | 2 4 | bitrid | ⊢ ( 𝑥  =  𝑛  →  ( ∀ 𝑦  ∈  𝐴 𝑦  ≤  𝑥  ↔  ∀ 𝑚  ∈  𝐴 𝑚  ≤  𝑛 ) ) | 
						
							| 6 | 5 | cbvrexvw | ⊢ ( ∃ 𝑥  ∈  ℤ ∀ 𝑦  ∈  𝐴 𝑦  ≤  𝑥  ↔  ∃ 𝑛  ∈  ℤ ∀ 𝑚  ∈  𝐴 𝑚  ≤  𝑛 ) | 
						
							| 7 |  | simp1rl | ⊢ ( ( ( ( 𝐴  ⊆  ℤ  ∧  𝐴  ≠  ∅ )  ∧  ( 𝑛  ∈  ℤ  ∧  ∀ 𝑚  ∈  𝐴 𝑚  ≤  𝑛 ) )  ∧  𝑤  ∈  ℤ  ∧  - 𝑤  ∈  𝐴 )  →  𝑛  ∈  ℤ ) | 
						
							| 8 | 7 | znegcld | ⊢ ( ( ( ( 𝐴  ⊆  ℤ  ∧  𝐴  ≠  ∅ )  ∧  ( 𝑛  ∈  ℤ  ∧  ∀ 𝑚  ∈  𝐴 𝑚  ≤  𝑛 ) )  ∧  𝑤  ∈  ℤ  ∧  - 𝑤  ∈  𝐴 )  →  - 𝑛  ∈  ℤ ) | 
						
							| 9 |  | simp2 | ⊢ ( ( ( ( 𝐴  ⊆  ℤ  ∧  𝐴  ≠  ∅ )  ∧  ( 𝑛  ∈  ℤ  ∧  ∀ 𝑚  ∈  𝐴 𝑚  ≤  𝑛 ) )  ∧  𝑤  ∈  ℤ  ∧  - 𝑤  ∈  𝐴 )  →  𝑤  ∈  ℤ ) | 
						
							| 10 | 9 | zred | ⊢ ( ( ( ( 𝐴  ⊆  ℤ  ∧  𝐴  ≠  ∅ )  ∧  ( 𝑛  ∈  ℤ  ∧  ∀ 𝑚  ∈  𝐴 𝑚  ≤  𝑛 ) )  ∧  𝑤  ∈  ℤ  ∧  - 𝑤  ∈  𝐴 )  →  𝑤  ∈  ℝ ) | 
						
							| 11 | 7 | zred | ⊢ ( ( ( ( 𝐴  ⊆  ℤ  ∧  𝐴  ≠  ∅ )  ∧  ( 𝑛  ∈  ℤ  ∧  ∀ 𝑚  ∈  𝐴 𝑚  ≤  𝑛 ) )  ∧  𝑤  ∈  ℤ  ∧  - 𝑤  ∈  𝐴 )  →  𝑛  ∈  ℝ ) | 
						
							| 12 |  | breq1 | ⊢ ( 𝑚  =  - 𝑤  →  ( 𝑚  ≤  𝑛  ↔  - 𝑤  ≤  𝑛 ) ) | 
						
							| 13 |  | simp1rr | ⊢ ( ( ( ( 𝐴  ⊆  ℤ  ∧  𝐴  ≠  ∅ )  ∧  ( 𝑛  ∈  ℤ  ∧  ∀ 𝑚  ∈  𝐴 𝑚  ≤  𝑛 ) )  ∧  𝑤  ∈  ℤ  ∧  - 𝑤  ∈  𝐴 )  →  ∀ 𝑚  ∈  𝐴 𝑚  ≤  𝑛 ) | 
						
							| 14 |  | simp3 | ⊢ ( ( ( ( 𝐴  ⊆  ℤ  ∧  𝐴  ≠  ∅ )  ∧  ( 𝑛  ∈  ℤ  ∧  ∀ 𝑚  ∈  𝐴 𝑚  ≤  𝑛 ) )  ∧  𝑤  ∈  ℤ  ∧  - 𝑤  ∈  𝐴 )  →  - 𝑤  ∈  𝐴 ) | 
						
							| 15 | 12 13 14 | rspcdva | ⊢ ( ( ( ( 𝐴  ⊆  ℤ  ∧  𝐴  ≠  ∅ )  ∧  ( 𝑛  ∈  ℤ  ∧  ∀ 𝑚  ∈  𝐴 𝑚  ≤  𝑛 ) )  ∧  𝑤  ∈  ℤ  ∧  - 𝑤  ∈  𝐴 )  →  - 𝑤  ≤  𝑛 ) | 
						
							| 16 | 10 11 15 | lenegcon1d | ⊢ ( ( ( ( 𝐴  ⊆  ℤ  ∧  𝐴  ≠  ∅ )  ∧  ( 𝑛  ∈  ℤ  ∧  ∀ 𝑚  ∈  𝐴 𝑚  ≤  𝑛 ) )  ∧  𝑤  ∈  ℤ  ∧  - 𝑤  ∈  𝐴 )  →  - 𝑛  ≤  𝑤 ) | 
						
							| 17 |  | eluz2 | ⊢ ( 𝑤  ∈  ( ℤ≥ ‘ - 𝑛 )  ↔  ( - 𝑛  ∈  ℤ  ∧  𝑤  ∈  ℤ  ∧  - 𝑛  ≤  𝑤 ) ) | 
						
							| 18 | 8 9 16 17 | syl3anbrc | ⊢ ( ( ( ( 𝐴  ⊆  ℤ  ∧  𝐴  ≠  ∅ )  ∧  ( 𝑛  ∈  ℤ  ∧  ∀ 𝑚  ∈  𝐴 𝑚  ≤  𝑛 ) )  ∧  𝑤  ∈  ℤ  ∧  - 𝑤  ∈  𝐴 )  →  𝑤  ∈  ( ℤ≥ ‘ - 𝑛 ) ) | 
						
							| 19 | 18 | rabssdv | ⊢ ( ( ( 𝐴  ⊆  ℤ  ∧  𝐴  ≠  ∅ )  ∧  ( 𝑛  ∈  ℤ  ∧  ∀ 𝑚  ∈  𝐴 𝑚  ≤  𝑛 ) )  →  { 𝑤  ∈  ℤ  ∣  - 𝑤  ∈  𝐴 }  ⊆  ( ℤ≥ ‘ - 𝑛 ) ) | 
						
							| 20 |  | n0 | ⊢ ( 𝐴  ≠  ∅  ↔  ∃ 𝑛 𝑛  ∈  𝐴 ) | 
						
							| 21 |  | ssel2 | ⊢ ( ( 𝐴  ⊆  ℤ  ∧  𝑛  ∈  𝐴 )  →  𝑛  ∈  ℤ ) | 
						
							| 22 | 21 | znegcld | ⊢ ( ( 𝐴  ⊆  ℤ  ∧  𝑛  ∈  𝐴 )  →  - 𝑛  ∈  ℤ ) | 
						
							| 23 | 21 | zcnd | ⊢ ( ( 𝐴  ⊆  ℤ  ∧  𝑛  ∈  𝐴 )  →  𝑛  ∈  ℂ ) | 
						
							| 24 | 23 | negnegd | ⊢ ( ( 𝐴  ⊆  ℤ  ∧  𝑛  ∈  𝐴 )  →  - - 𝑛  =  𝑛 ) | 
						
							| 25 |  | simpr | ⊢ ( ( 𝐴  ⊆  ℤ  ∧  𝑛  ∈  𝐴 )  →  𝑛  ∈  𝐴 ) | 
						
							| 26 | 24 25 | eqeltrd | ⊢ ( ( 𝐴  ⊆  ℤ  ∧  𝑛  ∈  𝐴 )  →  - - 𝑛  ∈  𝐴 ) | 
						
							| 27 |  | negeq | ⊢ ( 𝑤  =  - 𝑛  →  - 𝑤  =  - - 𝑛 ) | 
						
							| 28 | 27 | eleq1d | ⊢ ( 𝑤  =  - 𝑛  →  ( - 𝑤  ∈  𝐴  ↔  - - 𝑛  ∈  𝐴 ) ) | 
						
							| 29 | 28 | rspcev | ⊢ ( ( - 𝑛  ∈  ℤ  ∧  - - 𝑛  ∈  𝐴 )  →  ∃ 𝑤  ∈  ℤ - 𝑤  ∈  𝐴 ) | 
						
							| 30 | 22 26 29 | syl2anc | ⊢ ( ( 𝐴  ⊆  ℤ  ∧  𝑛  ∈  𝐴 )  →  ∃ 𝑤  ∈  ℤ - 𝑤  ∈  𝐴 ) | 
						
							| 31 | 30 | ex | ⊢ ( 𝐴  ⊆  ℤ  →  ( 𝑛  ∈  𝐴  →  ∃ 𝑤  ∈  ℤ - 𝑤  ∈  𝐴 ) ) | 
						
							| 32 | 31 | exlimdv | ⊢ ( 𝐴  ⊆  ℤ  →  ( ∃ 𝑛 𝑛  ∈  𝐴  →  ∃ 𝑤  ∈  ℤ - 𝑤  ∈  𝐴 ) ) | 
						
							| 33 | 32 | imp | ⊢ ( ( 𝐴  ⊆  ℤ  ∧  ∃ 𝑛 𝑛  ∈  𝐴 )  →  ∃ 𝑤  ∈  ℤ - 𝑤  ∈  𝐴 ) | 
						
							| 34 | 20 33 | sylan2b | ⊢ ( ( 𝐴  ⊆  ℤ  ∧  𝐴  ≠  ∅ )  →  ∃ 𝑤  ∈  ℤ - 𝑤  ∈  𝐴 ) | 
						
							| 35 | 34 | adantr | ⊢ ( ( ( 𝐴  ⊆  ℤ  ∧  𝐴  ≠  ∅ )  ∧  ( 𝑛  ∈  ℤ  ∧  ∀ 𝑚  ∈  𝐴 𝑚  ≤  𝑛 ) )  →  ∃ 𝑤  ∈  ℤ - 𝑤  ∈  𝐴 ) | 
						
							| 36 |  | rabn0 | ⊢ ( { 𝑤  ∈  ℤ  ∣  - 𝑤  ∈  𝐴 }  ≠  ∅  ↔  ∃ 𝑤  ∈  ℤ - 𝑤  ∈  𝐴 ) | 
						
							| 37 | 35 36 | sylibr | ⊢ ( ( ( 𝐴  ⊆  ℤ  ∧  𝐴  ≠  ∅ )  ∧  ( 𝑛  ∈  ℤ  ∧  ∀ 𝑚  ∈  𝐴 𝑚  ≤  𝑛 ) )  →  { 𝑤  ∈  ℤ  ∣  - 𝑤  ∈  𝐴 }  ≠  ∅ ) | 
						
							| 38 |  | infssuzcl | ⊢ ( ( { 𝑤  ∈  ℤ  ∣  - 𝑤  ∈  𝐴 }  ⊆  ( ℤ≥ ‘ - 𝑛 )  ∧  { 𝑤  ∈  ℤ  ∣  - 𝑤  ∈  𝐴 }  ≠  ∅ )  →  inf ( { 𝑤  ∈  ℤ  ∣  - 𝑤  ∈  𝐴 } ,  ℝ ,   <  )  ∈  { 𝑤  ∈  ℤ  ∣  - 𝑤  ∈  𝐴 } ) | 
						
							| 39 | 19 37 38 | syl2anc | ⊢ ( ( ( 𝐴  ⊆  ℤ  ∧  𝐴  ≠  ∅ )  ∧  ( 𝑛  ∈  ℤ  ∧  ∀ 𝑚  ∈  𝐴 𝑚  ≤  𝑛 ) )  →  inf ( { 𝑤  ∈  ℤ  ∣  - 𝑤  ∈  𝐴 } ,  ℝ ,   <  )  ∈  { 𝑤  ∈  ℤ  ∣  - 𝑤  ∈  𝐴 } ) | 
						
							| 40 |  | negeq | ⊢ ( 𝑛  =  inf ( { 𝑤  ∈  ℤ  ∣  - 𝑤  ∈  𝐴 } ,  ℝ ,   <  )  →  - 𝑛  =  - inf ( { 𝑤  ∈  ℤ  ∣  - 𝑤  ∈  𝐴 } ,  ℝ ,   <  ) ) | 
						
							| 41 | 40 | eleq1d | ⊢ ( 𝑛  =  inf ( { 𝑤  ∈  ℤ  ∣  - 𝑤  ∈  𝐴 } ,  ℝ ,   <  )  →  ( - 𝑛  ∈  𝐴  ↔  - inf ( { 𝑤  ∈  ℤ  ∣  - 𝑤  ∈  𝐴 } ,  ℝ ,   <  )  ∈  𝐴 ) ) | 
						
							| 42 |  | negeq | ⊢ ( 𝑤  =  𝑛  →  - 𝑤  =  - 𝑛 ) | 
						
							| 43 | 42 | eleq1d | ⊢ ( 𝑤  =  𝑛  →  ( - 𝑤  ∈  𝐴  ↔  - 𝑛  ∈  𝐴 ) ) | 
						
							| 44 | 43 | cbvrabv | ⊢ { 𝑤  ∈  ℤ  ∣  - 𝑤  ∈  𝐴 }  =  { 𝑛  ∈  ℤ  ∣  - 𝑛  ∈  𝐴 } | 
						
							| 45 | 41 44 | elrab2 | ⊢ ( inf ( { 𝑤  ∈  ℤ  ∣  - 𝑤  ∈  𝐴 } ,  ℝ ,   <  )  ∈  { 𝑤  ∈  ℤ  ∣  - 𝑤  ∈  𝐴 }  ↔  ( inf ( { 𝑤  ∈  ℤ  ∣  - 𝑤  ∈  𝐴 } ,  ℝ ,   <  )  ∈  ℤ  ∧  - inf ( { 𝑤  ∈  ℤ  ∣  - 𝑤  ∈  𝐴 } ,  ℝ ,   <  )  ∈  𝐴 ) ) | 
						
							| 46 | 45 | simprbi | ⊢ ( inf ( { 𝑤  ∈  ℤ  ∣  - 𝑤  ∈  𝐴 } ,  ℝ ,   <  )  ∈  { 𝑤  ∈  ℤ  ∣  - 𝑤  ∈  𝐴 }  →  - inf ( { 𝑤  ∈  ℤ  ∣  - 𝑤  ∈  𝐴 } ,  ℝ ,   <  )  ∈  𝐴 ) | 
						
							| 47 | 39 46 | syl | ⊢ ( ( ( 𝐴  ⊆  ℤ  ∧  𝐴  ≠  ∅ )  ∧  ( 𝑛  ∈  ℤ  ∧  ∀ 𝑚  ∈  𝐴 𝑚  ≤  𝑛 ) )  →  - inf ( { 𝑤  ∈  ℤ  ∣  - 𝑤  ∈  𝐴 } ,  ℝ ,   <  )  ∈  𝐴 ) | 
						
							| 48 |  | simpll | ⊢ ( ( ( 𝐴  ⊆  ℤ  ∧  𝐴  ≠  ∅ )  ∧  ( 𝑛  ∈  ℤ  ∧  ∀ 𝑚  ∈  𝐴 𝑚  ≤  𝑛 ) )  →  𝐴  ⊆  ℤ ) | 
						
							| 49 | 48 | sselda | ⊢ ( ( ( ( 𝐴  ⊆  ℤ  ∧  𝐴  ≠  ∅ )  ∧  ( 𝑛  ∈  ℤ  ∧  ∀ 𝑚  ∈  𝐴 𝑚  ≤  𝑛 ) )  ∧  𝑦  ∈  𝐴 )  →  𝑦  ∈  ℤ ) | 
						
							| 50 | 49 | zred | ⊢ ( ( ( ( 𝐴  ⊆  ℤ  ∧  𝐴  ≠  ∅ )  ∧  ( 𝑛  ∈  ℤ  ∧  ∀ 𝑚  ∈  𝐴 𝑚  ≤  𝑛 ) )  ∧  𝑦  ∈  𝐴 )  →  𝑦  ∈  ℝ ) | 
						
							| 51 |  | ssrab2 | ⊢ { 𝑤  ∈  ℤ  ∣  - 𝑤  ∈  𝐴 }  ⊆  ℤ | 
						
							| 52 | 39 | adantr | ⊢ ( ( ( ( 𝐴  ⊆  ℤ  ∧  𝐴  ≠  ∅ )  ∧  ( 𝑛  ∈  ℤ  ∧  ∀ 𝑚  ∈  𝐴 𝑚  ≤  𝑛 ) )  ∧  𝑦  ∈  𝐴 )  →  inf ( { 𝑤  ∈  ℤ  ∣  - 𝑤  ∈  𝐴 } ,  ℝ ,   <  )  ∈  { 𝑤  ∈  ℤ  ∣  - 𝑤  ∈  𝐴 } ) | 
						
							| 53 | 51 52 | sselid | ⊢ ( ( ( ( 𝐴  ⊆  ℤ  ∧  𝐴  ≠  ∅ )  ∧  ( 𝑛  ∈  ℤ  ∧  ∀ 𝑚  ∈  𝐴 𝑚  ≤  𝑛 ) )  ∧  𝑦  ∈  𝐴 )  →  inf ( { 𝑤  ∈  ℤ  ∣  - 𝑤  ∈  𝐴 } ,  ℝ ,   <  )  ∈  ℤ ) | 
						
							| 54 | 53 | znegcld | ⊢ ( ( ( ( 𝐴  ⊆  ℤ  ∧  𝐴  ≠  ∅ )  ∧  ( 𝑛  ∈  ℤ  ∧  ∀ 𝑚  ∈  𝐴 𝑚  ≤  𝑛 ) )  ∧  𝑦  ∈  𝐴 )  →  - inf ( { 𝑤  ∈  ℤ  ∣  - 𝑤  ∈  𝐴 } ,  ℝ ,   <  )  ∈  ℤ ) | 
						
							| 55 | 54 | zred | ⊢ ( ( ( ( 𝐴  ⊆  ℤ  ∧  𝐴  ≠  ∅ )  ∧  ( 𝑛  ∈  ℤ  ∧  ∀ 𝑚  ∈  𝐴 𝑚  ≤  𝑛 ) )  ∧  𝑦  ∈  𝐴 )  →  - inf ( { 𝑤  ∈  ℤ  ∣  - 𝑤  ∈  𝐴 } ,  ℝ ,   <  )  ∈  ℝ ) | 
						
							| 56 | 53 | zred | ⊢ ( ( ( ( 𝐴  ⊆  ℤ  ∧  𝐴  ≠  ∅ )  ∧  ( 𝑛  ∈  ℤ  ∧  ∀ 𝑚  ∈  𝐴 𝑚  ≤  𝑛 ) )  ∧  𝑦  ∈  𝐴 )  →  inf ( { 𝑤  ∈  ℤ  ∣  - 𝑤  ∈  𝐴 } ,  ℝ ,   <  )  ∈  ℝ ) | 
						
							| 57 | 19 | adantr | ⊢ ( ( ( ( 𝐴  ⊆  ℤ  ∧  𝐴  ≠  ∅ )  ∧  ( 𝑛  ∈  ℤ  ∧  ∀ 𝑚  ∈  𝐴 𝑚  ≤  𝑛 ) )  ∧  𝑦  ∈  𝐴 )  →  { 𝑤  ∈  ℤ  ∣  - 𝑤  ∈  𝐴 }  ⊆  ( ℤ≥ ‘ - 𝑛 ) ) | 
						
							| 58 |  | negeq | ⊢ ( 𝑤  =  - 𝑦  →  - 𝑤  =  - - 𝑦 ) | 
						
							| 59 | 58 | eleq1d | ⊢ ( 𝑤  =  - 𝑦  →  ( - 𝑤  ∈  𝐴  ↔  - - 𝑦  ∈  𝐴 ) ) | 
						
							| 60 | 49 | znegcld | ⊢ ( ( ( ( 𝐴  ⊆  ℤ  ∧  𝐴  ≠  ∅ )  ∧  ( 𝑛  ∈  ℤ  ∧  ∀ 𝑚  ∈  𝐴 𝑚  ≤  𝑛 ) )  ∧  𝑦  ∈  𝐴 )  →  - 𝑦  ∈  ℤ ) | 
						
							| 61 | 49 | zcnd | ⊢ ( ( ( ( 𝐴  ⊆  ℤ  ∧  𝐴  ≠  ∅ )  ∧  ( 𝑛  ∈  ℤ  ∧  ∀ 𝑚  ∈  𝐴 𝑚  ≤  𝑛 ) )  ∧  𝑦  ∈  𝐴 )  →  𝑦  ∈  ℂ ) | 
						
							| 62 | 61 | negnegd | ⊢ ( ( ( ( 𝐴  ⊆  ℤ  ∧  𝐴  ≠  ∅ )  ∧  ( 𝑛  ∈  ℤ  ∧  ∀ 𝑚  ∈  𝐴 𝑚  ≤  𝑛 ) )  ∧  𝑦  ∈  𝐴 )  →  - - 𝑦  =  𝑦 ) | 
						
							| 63 |  | simpr | ⊢ ( ( ( ( 𝐴  ⊆  ℤ  ∧  𝐴  ≠  ∅ )  ∧  ( 𝑛  ∈  ℤ  ∧  ∀ 𝑚  ∈  𝐴 𝑚  ≤  𝑛 ) )  ∧  𝑦  ∈  𝐴 )  →  𝑦  ∈  𝐴 ) | 
						
							| 64 | 62 63 | eqeltrd | ⊢ ( ( ( ( 𝐴  ⊆  ℤ  ∧  𝐴  ≠  ∅ )  ∧  ( 𝑛  ∈  ℤ  ∧  ∀ 𝑚  ∈  𝐴 𝑚  ≤  𝑛 ) )  ∧  𝑦  ∈  𝐴 )  →  - - 𝑦  ∈  𝐴 ) | 
						
							| 65 | 59 60 64 | elrabd | ⊢ ( ( ( ( 𝐴  ⊆  ℤ  ∧  𝐴  ≠  ∅ )  ∧  ( 𝑛  ∈  ℤ  ∧  ∀ 𝑚  ∈  𝐴 𝑚  ≤  𝑛 ) )  ∧  𝑦  ∈  𝐴 )  →  - 𝑦  ∈  { 𝑤  ∈  ℤ  ∣  - 𝑤  ∈  𝐴 } ) | 
						
							| 66 |  | infssuzle | ⊢ ( ( { 𝑤  ∈  ℤ  ∣  - 𝑤  ∈  𝐴 }  ⊆  ( ℤ≥ ‘ - 𝑛 )  ∧  - 𝑦  ∈  { 𝑤  ∈  ℤ  ∣  - 𝑤  ∈  𝐴 } )  →  inf ( { 𝑤  ∈  ℤ  ∣  - 𝑤  ∈  𝐴 } ,  ℝ ,   <  )  ≤  - 𝑦 ) | 
						
							| 67 | 57 65 66 | syl2anc | ⊢ ( ( ( ( 𝐴  ⊆  ℤ  ∧  𝐴  ≠  ∅ )  ∧  ( 𝑛  ∈  ℤ  ∧  ∀ 𝑚  ∈  𝐴 𝑚  ≤  𝑛 ) )  ∧  𝑦  ∈  𝐴 )  →  inf ( { 𝑤  ∈  ℤ  ∣  - 𝑤  ∈  𝐴 } ,  ℝ ,   <  )  ≤  - 𝑦 ) | 
						
							| 68 | 56 50 67 | lenegcon2d | ⊢ ( ( ( ( 𝐴  ⊆  ℤ  ∧  𝐴  ≠  ∅ )  ∧  ( 𝑛  ∈  ℤ  ∧  ∀ 𝑚  ∈  𝐴 𝑚  ≤  𝑛 ) )  ∧  𝑦  ∈  𝐴 )  →  𝑦  ≤  - inf ( { 𝑤  ∈  ℤ  ∣  - 𝑤  ∈  𝐴 } ,  ℝ ,   <  ) ) | 
						
							| 69 | 50 55 68 | lensymd | ⊢ ( ( ( ( 𝐴  ⊆  ℤ  ∧  𝐴  ≠  ∅ )  ∧  ( 𝑛  ∈  ℤ  ∧  ∀ 𝑚  ∈  𝐴 𝑚  ≤  𝑛 ) )  ∧  𝑦  ∈  𝐴 )  →  ¬  - inf ( { 𝑤  ∈  ℤ  ∣  - 𝑤  ∈  𝐴 } ,  ℝ ,   <  )  <  𝑦 ) | 
						
							| 70 | 69 | ralrimiva | ⊢ ( ( ( 𝐴  ⊆  ℤ  ∧  𝐴  ≠  ∅ )  ∧  ( 𝑛  ∈  ℤ  ∧  ∀ 𝑚  ∈  𝐴 𝑚  ≤  𝑛 ) )  →  ∀ 𝑦  ∈  𝐴 ¬  - inf ( { 𝑤  ∈  ℤ  ∣  - 𝑤  ∈  𝐴 } ,  ℝ ,   <  )  <  𝑦 ) | 
						
							| 71 |  | breq2 | ⊢ ( 𝑧  =  - inf ( { 𝑤  ∈  ℤ  ∣  - 𝑤  ∈  𝐴 } ,  ℝ ,   <  )  →  ( 𝑦  <  𝑧  ↔  𝑦  <  - inf ( { 𝑤  ∈  ℤ  ∣  - 𝑤  ∈  𝐴 } ,  ℝ ,   <  ) ) ) | 
						
							| 72 | 71 | rspcev | ⊢ ( ( - inf ( { 𝑤  ∈  ℤ  ∣  - 𝑤  ∈  𝐴 } ,  ℝ ,   <  )  ∈  𝐴  ∧  𝑦  <  - inf ( { 𝑤  ∈  ℤ  ∣  - 𝑤  ∈  𝐴 } ,  ℝ ,   <  ) )  →  ∃ 𝑧  ∈  𝐴 𝑦  <  𝑧 ) | 
						
							| 73 | 72 | ex | ⊢ ( - inf ( { 𝑤  ∈  ℤ  ∣  - 𝑤  ∈  𝐴 } ,  ℝ ,   <  )  ∈  𝐴  →  ( 𝑦  <  - inf ( { 𝑤  ∈  ℤ  ∣  - 𝑤  ∈  𝐴 } ,  ℝ ,   <  )  →  ∃ 𝑧  ∈  𝐴 𝑦  <  𝑧 ) ) | 
						
							| 74 | 47 73 | syl | ⊢ ( ( ( 𝐴  ⊆  ℤ  ∧  𝐴  ≠  ∅ )  ∧  ( 𝑛  ∈  ℤ  ∧  ∀ 𝑚  ∈  𝐴 𝑚  ≤  𝑛 ) )  →  ( 𝑦  <  - inf ( { 𝑤  ∈  ℤ  ∣  - 𝑤  ∈  𝐴 } ,  ℝ ,   <  )  →  ∃ 𝑧  ∈  𝐴 𝑦  <  𝑧 ) ) | 
						
							| 75 | 74 | ralrimivw | ⊢ ( ( ( 𝐴  ⊆  ℤ  ∧  𝐴  ≠  ∅ )  ∧  ( 𝑛  ∈  ℤ  ∧  ∀ 𝑚  ∈  𝐴 𝑚  ≤  𝑛 ) )  →  ∀ 𝑦  ∈  𝐵 ( 𝑦  <  - inf ( { 𝑤  ∈  ℤ  ∣  - 𝑤  ∈  𝐴 } ,  ℝ ,   <  )  →  ∃ 𝑧  ∈  𝐴 𝑦  <  𝑧 ) ) | 
						
							| 76 |  | breq1 | ⊢ ( 𝑥  =  - inf ( { 𝑤  ∈  ℤ  ∣  - 𝑤  ∈  𝐴 } ,  ℝ ,   <  )  →  ( 𝑥  <  𝑦  ↔  - inf ( { 𝑤  ∈  ℤ  ∣  - 𝑤  ∈  𝐴 } ,  ℝ ,   <  )  <  𝑦 ) ) | 
						
							| 77 | 76 | notbid | ⊢ ( 𝑥  =  - inf ( { 𝑤  ∈  ℤ  ∣  - 𝑤  ∈  𝐴 } ,  ℝ ,   <  )  →  ( ¬  𝑥  <  𝑦  ↔  ¬  - inf ( { 𝑤  ∈  ℤ  ∣  - 𝑤  ∈  𝐴 } ,  ℝ ,   <  )  <  𝑦 ) ) | 
						
							| 78 | 77 | ralbidv | ⊢ ( 𝑥  =  - inf ( { 𝑤  ∈  ℤ  ∣  - 𝑤  ∈  𝐴 } ,  ℝ ,   <  )  →  ( ∀ 𝑦  ∈  𝐴 ¬  𝑥  <  𝑦  ↔  ∀ 𝑦  ∈  𝐴 ¬  - inf ( { 𝑤  ∈  ℤ  ∣  - 𝑤  ∈  𝐴 } ,  ℝ ,   <  )  <  𝑦 ) ) | 
						
							| 79 |  | breq2 | ⊢ ( 𝑥  =  - inf ( { 𝑤  ∈  ℤ  ∣  - 𝑤  ∈  𝐴 } ,  ℝ ,   <  )  →  ( 𝑦  <  𝑥  ↔  𝑦  <  - inf ( { 𝑤  ∈  ℤ  ∣  - 𝑤  ∈  𝐴 } ,  ℝ ,   <  ) ) ) | 
						
							| 80 | 79 | imbi1d | ⊢ ( 𝑥  =  - inf ( { 𝑤  ∈  ℤ  ∣  - 𝑤  ∈  𝐴 } ,  ℝ ,   <  )  →  ( ( 𝑦  <  𝑥  →  ∃ 𝑧  ∈  𝐴 𝑦  <  𝑧 )  ↔  ( 𝑦  <  - inf ( { 𝑤  ∈  ℤ  ∣  - 𝑤  ∈  𝐴 } ,  ℝ ,   <  )  →  ∃ 𝑧  ∈  𝐴 𝑦  <  𝑧 ) ) ) | 
						
							| 81 | 80 | ralbidv | ⊢ ( 𝑥  =  - inf ( { 𝑤  ∈  ℤ  ∣  - 𝑤  ∈  𝐴 } ,  ℝ ,   <  )  →  ( ∀ 𝑦  ∈  𝐵 ( 𝑦  <  𝑥  →  ∃ 𝑧  ∈  𝐴 𝑦  <  𝑧 )  ↔  ∀ 𝑦  ∈  𝐵 ( 𝑦  <  - inf ( { 𝑤  ∈  ℤ  ∣  - 𝑤  ∈  𝐴 } ,  ℝ ,   <  )  →  ∃ 𝑧  ∈  𝐴 𝑦  <  𝑧 ) ) ) | 
						
							| 82 | 78 81 | anbi12d | ⊢ ( 𝑥  =  - inf ( { 𝑤  ∈  ℤ  ∣  - 𝑤  ∈  𝐴 } ,  ℝ ,   <  )  →  ( ( ∀ 𝑦  ∈  𝐴 ¬  𝑥  <  𝑦  ∧  ∀ 𝑦  ∈  𝐵 ( 𝑦  <  𝑥  →  ∃ 𝑧  ∈  𝐴 𝑦  <  𝑧 ) )  ↔  ( ∀ 𝑦  ∈  𝐴 ¬  - inf ( { 𝑤  ∈  ℤ  ∣  - 𝑤  ∈  𝐴 } ,  ℝ ,   <  )  <  𝑦  ∧  ∀ 𝑦  ∈  𝐵 ( 𝑦  <  - inf ( { 𝑤  ∈  ℤ  ∣  - 𝑤  ∈  𝐴 } ,  ℝ ,   <  )  →  ∃ 𝑧  ∈  𝐴 𝑦  <  𝑧 ) ) ) ) | 
						
							| 83 | 82 | rspcev | ⊢ ( ( - inf ( { 𝑤  ∈  ℤ  ∣  - 𝑤  ∈  𝐴 } ,  ℝ ,   <  )  ∈  𝐴  ∧  ( ∀ 𝑦  ∈  𝐴 ¬  - inf ( { 𝑤  ∈  ℤ  ∣  - 𝑤  ∈  𝐴 } ,  ℝ ,   <  )  <  𝑦  ∧  ∀ 𝑦  ∈  𝐵 ( 𝑦  <  - inf ( { 𝑤  ∈  ℤ  ∣  - 𝑤  ∈  𝐴 } ,  ℝ ,   <  )  →  ∃ 𝑧  ∈  𝐴 𝑦  <  𝑧 ) ) )  →  ∃ 𝑥  ∈  𝐴 ( ∀ 𝑦  ∈  𝐴 ¬  𝑥  <  𝑦  ∧  ∀ 𝑦  ∈  𝐵 ( 𝑦  <  𝑥  →  ∃ 𝑧  ∈  𝐴 𝑦  <  𝑧 ) ) ) | 
						
							| 84 | 47 70 75 83 | syl12anc | ⊢ ( ( ( 𝐴  ⊆  ℤ  ∧  𝐴  ≠  ∅ )  ∧  ( 𝑛  ∈  ℤ  ∧  ∀ 𝑚  ∈  𝐴 𝑚  ≤  𝑛 ) )  →  ∃ 𝑥  ∈  𝐴 ( ∀ 𝑦  ∈  𝐴 ¬  𝑥  <  𝑦  ∧  ∀ 𝑦  ∈  𝐵 ( 𝑦  <  𝑥  →  ∃ 𝑧  ∈  𝐴 𝑦  <  𝑧 ) ) ) | 
						
							| 85 | 84 | rexlimdvaa | ⊢ ( ( 𝐴  ⊆  ℤ  ∧  𝐴  ≠  ∅ )  →  ( ∃ 𝑛  ∈  ℤ ∀ 𝑚  ∈  𝐴 𝑚  ≤  𝑛  →  ∃ 𝑥  ∈  𝐴 ( ∀ 𝑦  ∈  𝐴 ¬  𝑥  <  𝑦  ∧  ∀ 𝑦  ∈  𝐵 ( 𝑦  <  𝑥  →  ∃ 𝑧  ∈  𝐴 𝑦  <  𝑧 ) ) ) ) | 
						
							| 86 | 6 85 | biimtrid | ⊢ ( ( 𝐴  ⊆  ℤ  ∧  𝐴  ≠  ∅ )  →  ( ∃ 𝑥  ∈  ℤ ∀ 𝑦  ∈  𝐴 𝑦  ≤  𝑥  →  ∃ 𝑥  ∈  𝐴 ( ∀ 𝑦  ∈  𝐴 ¬  𝑥  <  𝑦  ∧  ∀ 𝑦  ∈  𝐵 ( 𝑦  <  𝑥  →  ∃ 𝑧  ∈  𝐴 𝑦  <  𝑧 ) ) ) ) | 
						
							| 87 | 86 | 3impia | ⊢ ( ( 𝐴  ⊆  ℤ  ∧  𝐴  ≠  ∅  ∧  ∃ 𝑥  ∈  ℤ ∀ 𝑦  ∈  𝐴 𝑦  ≤  𝑥 )  →  ∃ 𝑥  ∈  𝐴 ( ∀ 𝑦  ∈  𝐴 ¬  𝑥  <  𝑦  ∧  ∀ 𝑦  ∈  𝐵 ( 𝑦  <  𝑥  →  ∃ 𝑧  ∈  𝐴 𝑦  <  𝑧 ) ) ) |