Metamath Proof Explorer


Theorem supub

Description: A supremum is an upper bound. See also supcl and suplub .

This proof demonstrates how to expand an iota-based definition ( df-iota ) using riotacl2 .

(Contributed by NM, 12-Oct-2004) (Proof shortened by Mario Carneiro, 24-Dec-2016)

Ref Expression
Hypotheses supmo.1 ( 𝜑𝑅 Or 𝐴 )
supcl.2 ( 𝜑 → ∃ 𝑥𝐴 ( ∀ 𝑦𝐵 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧𝐵 𝑦 𝑅 𝑧 ) ) )
Assertion supub ( 𝜑 → ( 𝐶𝐵 → ¬ sup ( 𝐵 , 𝐴 , 𝑅 ) 𝑅 𝐶 ) )

Proof

Step Hyp Ref Expression
1 supmo.1 ( 𝜑𝑅 Or 𝐴 )
2 supcl.2 ( 𝜑 → ∃ 𝑥𝐴 ( ∀ 𝑦𝐵 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧𝐵 𝑦 𝑅 𝑧 ) ) )
3 simpl ( ( ∀ 𝑦𝐵 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧𝐵 𝑦 𝑅 𝑧 ) ) → ∀ 𝑦𝐵 ¬ 𝑥 𝑅 𝑦 )
4 3 a1i ( 𝑥𝐴 → ( ( ∀ 𝑦𝐵 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧𝐵 𝑦 𝑅 𝑧 ) ) → ∀ 𝑦𝐵 ¬ 𝑥 𝑅 𝑦 ) )
5 4 ss2rabi { 𝑥𝐴 ∣ ( ∀ 𝑦𝐵 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧𝐵 𝑦 𝑅 𝑧 ) ) } ⊆ { 𝑥𝐴 ∣ ∀ 𝑦𝐵 ¬ 𝑥 𝑅 𝑦 }
6 1 supval2 ( 𝜑 → sup ( 𝐵 , 𝐴 , 𝑅 ) = ( 𝑥𝐴 ( ∀ 𝑦𝐵 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧𝐵 𝑦 𝑅 𝑧 ) ) ) )
7 1 2 supeu ( 𝜑 → ∃! 𝑥𝐴 ( ∀ 𝑦𝐵 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧𝐵 𝑦 𝑅 𝑧 ) ) )
8 riotacl2 ( ∃! 𝑥𝐴 ( ∀ 𝑦𝐵 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧𝐵 𝑦 𝑅 𝑧 ) ) → ( 𝑥𝐴 ( ∀ 𝑦𝐵 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧𝐵 𝑦 𝑅 𝑧 ) ) ) ∈ { 𝑥𝐴 ∣ ( ∀ 𝑦𝐵 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧𝐵 𝑦 𝑅 𝑧 ) ) } )
9 7 8 syl ( 𝜑 → ( 𝑥𝐴 ( ∀ 𝑦𝐵 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧𝐵 𝑦 𝑅 𝑧 ) ) ) ∈ { 𝑥𝐴 ∣ ( ∀ 𝑦𝐵 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧𝐵 𝑦 𝑅 𝑧 ) ) } )
10 6 9 eqeltrd ( 𝜑 → sup ( 𝐵 , 𝐴 , 𝑅 ) ∈ { 𝑥𝐴 ∣ ( ∀ 𝑦𝐵 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧𝐵 𝑦 𝑅 𝑧 ) ) } )
11 5 10 sseldi ( 𝜑 → sup ( 𝐵 , 𝐴 , 𝑅 ) ∈ { 𝑥𝐴 ∣ ∀ 𝑦𝐵 ¬ 𝑥 𝑅 𝑦 } )
12 breq2 ( 𝑦 = 𝑤 → ( 𝑥 𝑅 𝑦𝑥 𝑅 𝑤 ) )
13 12 notbid ( 𝑦 = 𝑤 → ( ¬ 𝑥 𝑅 𝑦 ↔ ¬ 𝑥 𝑅 𝑤 ) )
14 13 cbvralvw ( ∀ 𝑦𝐵 ¬ 𝑥 𝑅 𝑦 ↔ ∀ 𝑤𝐵 ¬ 𝑥 𝑅 𝑤 )
15 breq1 ( 𝑥 = sup ( 𝐵 , 𝐴 , 𝑅 ) → ( 𝑥 𝑅 𝑤 ↔ sup ( 𝐵 , 𝐴 , 𝑅 ) 𝑅 𝑤 ) )
16 15 notbid ( 𝑥 = sup ( 𝐵 , 𝐴 , 𝑅 ) → ( ¬ 𝑥 𝑅 𝑤 ↔ ¬ sup ( 𝐵 , 𝐴 , 𝑅 ) 𝑅 𝑤 ) )
17 16 ralbidv ( 𝑥 = sup ( 𝐵 , 𝐴 , 𝑅 ) → ( ∀ 𝑤𝐵 ¬ 𝑥 𝑅 𝑤 ↔ ∀ 𝑤𝐵 ¬ sup ( 𝐵 , 𝐴 , 𝑅 ) 𝑅 𝑤 ) )
18 14 17 syl5bb ( 𝑥 = sup ( 𝐵 , 𝐴 , 𝑅 ) → ( ∀ 𝑦𝐵 ¬ 𝑥 𝑅 𝑦 ↔ ∀ 𝑤𝐵 ¬ sup ( 𝐵 , 𝐴 , 𝑅 ) 𝑅 𝑤 ) )
19 18 elrab ( sup ( 𝐵 , 𝐴 , 𝑅 ) ∈ { 𝑥𝐴 ∣ ∀ 𝑦𝐵 ¬ 𝑥 𝑅 𝑦 } ↔ ( sup ( 𝐵 , 𝐴 , 𝑅 ) ∈ 𝐴 ∧ ∀ 𝑤𝐵 ¬ sup ( 𝐵 , 𝐴 , 𝑅 ) 𝑅 𝑤 ) )
20 19 simprbi ( sup ( 𝐵 , 𝐴 , 𝑅 ) ∈ { 𝑥𝐴 ∣ ∀ 𝑦𝐵 ¬ 𝑥 𝑅 𝑦 } → ∀ 𝑤𝐵 ¬ sup ( 𝐵 , 𝐴 , 𝑅 ) 𝑅 𝑤 )
21 11 20 syl ( 𝜑 → ∀ 𝑤𝐵 ¬ sup ( 𝐵 , 𝐴 , 𝑅 ) 𝑅 𝑤 )
22 breq2 ( 𝑤 = 𝐶 → ( sup ( 𝐵 , 𝐴 , 𝑅 ) 𝑅 𝑤 ↔ sup ( 𝐵 , 𝐴 , 𝑅 ) 𝑅 𝐶 ) )
23 22 notbid ( 𝑤 = 𝐶 → ( ¬ sup ( 𝐵 , 𝐴 , 𝑅 ) 𝑅 𝑤 ↔ ¬ sup ( 𝐵 , 𝐴 , 𝑅 ) 𝑅 𝐶 ) )
24 23 rspccv ( ∀ 𝑤𝐵 ¬ sup ( 𝐵 , 𝐴 , 𝑅 ) 𝑅 𝑤 → ( 𝐶𝐵 → ¬ sup ( 𝐵 , 𝐴 , 𝑅 ) 𝑅 𝐶 ) )
25 21 24 syl ( 𝜑 → ( 𝐶𝐵 → ¬ sup ( 𝐵 , 𝐴 , 𝑅 ) 𝑅 𝐶 ) )