Description: A supremum is an upper bound. See also supcl and suplub .
This proof demonstrates how to expand an iota-based definition ( df-iota ) using riotacl2 .
(Contributed by NM, 12-Oct-2004) (Proof shortened by Mario Carneiro, 24-Dec-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | supmo.1 | ⊢ ( 𝜑 → 𝑅 Or 𝐴 ) | |
supcl.2 | ⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐵 𝑦 𝑅 𝑧 ) ) ) | ||
Assertion | supub | ⊢ ( 𝜑 → ( 𝐶 ∈ 𝐵 → ¬ sup ( 𝐵 , 𝐴 , 𝑅 ) 𝑅 𝐶 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | supmo.1 | ⊢ ( 𝜑 → 𝑅 Or 𝐴 ) | |
2 | supcl.2 | ⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐵 𝑦 𝑅 𝑧 ) ) ) | |
3 | simpl | ⊢ ( ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐵 𝑦 𝑅 𝑧 ) ) → ∀ 𝑦 ∈ 𝐵 ¬ 𝑥 𝑅 𝑦 ) | |
4 | 3 | a1i | ⊢ ( 𝑥 ∈ 𝐴 → ( ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐵 𝑦 𝑅 𝑧 ) ) → ∀ 𝑦 ∈ 𝐵 ¬ 𝑥 𝑅 𝑦 ) ) |
5 | 4 | ss2rabi | ⊢ { 𝑥 ∈ 𝐴 ∣ ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐵 𝑦 𝑅 𝑧 ) ) } ⊆ { 𝑥 ∈ 𝐴 ∣ ∀ 𝑦 ∈ 𝐵 ¬ 𝑥 𝑅 𝑦 } |
6 | 1 | supval2 | ⊢ ( 𝜑 → sup ( 𝐵 , 𝐴 , 𝑅 ) = ( ℩ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐵 𝑦 𝑅 𝑧 ) ) ) ) |
7 | 1 2 | supeu | ⊢ ( 𝜑 → ∃! 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐵 𝑦 𝑅 𝑧 ) ) ) |
8 | riotacl2 | ⊢ ( ∃! 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐵 𝑦 𝑅 𝑧 ) ) → ( ℩ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐵 𝑦 𝑅 𝑧 ) ) ) ∈ { 𝑥 ∈ 𝐴 ∣ ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐵 𝑦 𝑅 𝑧 ) ) } ) | |
9 | 7 8 | syl | ⊢ ( 𝜑 → ( ℩ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐵 𝑦 𝑅 𝑧 ) ) ) ∈ { 𝑥 ∈ 𝐴 ∣ ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐵 𝑦 𝑅 𝑧 ) ) } ) |
10 | 6 9 | eqeltrd | ⊢ ( 𝜑 → sup ( 𝐵 , 𝐴 , 𝑅 ) ∈ { 𝑥 ∈ 𝐴 ∣ ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐵 𝑦 𝑅 𝑧 ) ) } ) |
11 | 5 10 | sselid | ⊢ ( 𝜑 → sup ( 𝐵 , 𝐴 , 𝑅 ) ∈ { 𝑥 ∈ 𝐴 ∣ ∀ 𝑦 ∈ 𝐵 ¬ 𝑥 𝑅 𝑦 } ) |
12 | breq2 | ⊢ ( 𝑦 = 𝑤 → ( 𝑥 𝑅 𝑦 ↔ 𝑥 𝑅 𝑤 ) ) | |
13 | 12 | notbid | ⊢ ( 𝑦 = 𝑤 → ( ¬ 𝑥 𝑅 𝑦 ↔ ¬ 𝑥 𝑅 𝑤 ) ) |
14 | 13 | cbvralvw | ⊢ ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑥 𝑅 𝑦 ↔ ∀ 𝑤 ∈ 𝐵 ¬ 𝑥 𝑅 𝑤 ) |
15 | breq1 | ⊢ ( 𝑥 = sup ( 𝐵 , 𝐴 , 𝑅 ) → ( 𝑥 𝑅 𝑤 ↔ sup ( 𝐵 , 𝐴 , 𝑅 ) 𝑅 𝑤 ) ) | |
16 | 15 | notbid | ⊢ ( 𝑥 = sup ( 𝐵 , 𝐴 , 𝑅 ) → ( ¬ 𝑥 𝑅 𝑤 ↔ ¬ sup ( 𝐵 , 𝐴 , 𝑅 ) 𝑅 𝑤 ) ) |
17 | 16 | ralbidv | ⊢ ( 𝑥 = sup ( 𝐵 , 𝐴 , 𝑅 ) → ( ∀ 𝑤 ∈ 𝐵 ¬ 𝑥 𝑅 𝑤 ↔ ∀ 𝑤 ∈ 𝐵 ¬ sup ( 𝐵 , 𝐴 , 𝑅 ) 𝑅 𝑤 ) ) |
18 | 14 17 | syl5bb | ⊢ ( 𝑥 = sup ( 𝐵 , 𝐴 , 𝑅 ) → ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑥 𝑅 𝑦 ↔ ∀ 𝑤 ∈ 𝐵 ¬ sup ( 𝐵 , 𝐴 , 𝑅 ) 𝑅 𝑤 ) ) |
19 | 18 | elrab | ⊢ ( sup ( 𝐵 , 𝐴 , 𝑅 ) ∈ { 𝑥 ∈ 𝐴 ∣ ∀ 𝑦 ∈ 𝐵 ¬ 𝑥 𝑅 𝑦 } ↔ ( sup ( 𝐵 , 𝐴 , 𝑅 ) ∈ 𝐴 ∧ ∀ 𝑤 ∈ 𝐵 ¬ sup ( 𝐵 , 𝐴 , 𝑅 ) 𝑅 𝑤 ) ) |
20 | 19 | simprbi | ⊢ ( sup ( 𝐵 , 𝐴 , 𝑅 ) ∈ { 𝑥 ∈ 𝐴 ∣ ∀ 𝑦 ∈ 𝐵 ¬ 𝑥 𝑅 𝑦 } → ∀ 𝑤 ∈ 𝐵 ¬ sup ( 𝐵 , 𝐴 , 𝑅 ) 𝑅 𝑤 ) |
21 | 11 20 | syl | ⊢ ( 𝜑 → ∀ 𝑤 ∈ 𝐵 ¬ sup ( 𝐵 , 𝐴 , 𝑅 ) 𝑅 𝑤 ) |
22 | breq2 | ⊢ ( 𝑤 = 𝐶 → ( sup ( 𝐵 , 𝐴 , 𝑅 ) 𝑅 𝑤 ↔ sup ( 𝐵 , 𝐴 , 𝑅 ) 𝑅 𝐶 ) ) | |
23 | 22 | notbid | ⊢ ( 𝑤 = 𝐶 → ( ¬ sup ( 𝐵 , 𝐴 , 𝑅 ) 𝑅 𝑤 ↔ ¬ sup ( 𝐵 , 𝐴 , 𝑅 ) 𝑅 𝐶 ) ) |
24 | 23 | rspccv | ⊢ ( ∀ 𝑤 ∈ 𝐵 ¬ sup ( 𝐵 , 𝐴 , 𝑅 ) 𝑅 𝑤 → ( 𝐶 ∈ 𝐵 → ¬ sup ( 𝐵 , 𝐴 , 𝑅 ) 𝑅 𝐶 ) ) |
25 | 21 24 | syl | ⊢ ( 𝜑 → ( 𝐶 ∈ 𝐵 → ¬ sup ( 𝐵 , 𝐴 , 𝑅 ) 𝑅 𝐶 ) ) |