| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dgrub.1 |
|- A = ( coeff ` F ) |
| 2 |
|
dgrub.2 |
|- N = ( deg ` F ) |
| 3 |
|
coeid.3 |
|- ( ph -> F e. ( Poly ` S ) ) |
| 4 |
|
coeid.4 |
|- ( ph -> M e. NN0 ) |
| 5 |
|
coeid.5 |
|- ( ph -> B e. ( ( S u. { 0 } ) ^m NN0 ) ) |
| 6 |
|
coeid.6 |
|- ( ph -> ( B " ( ZZ>= ` ( M + 1 ) ) ) = { 0 } ) |
| 7 |
|
coeid.7 |
|- ( ph -> F = ( z e. CC |-> sum_ k e. ( 0 ... M ) ( ( B ` k ) x. ( z ^ k ) ) ) ) |
| 8 |
|
plybss |
|- ( F e. ( Poly ` S ) -> S C_ CC ) |
| 9 |
3 8
|
syl |
|- ( ph -> S C_ CC ) |
| 10 |
|
0cnd |
|- ( ph -> 0 e. CC ) |
| 11 |
10
|
snssd |
|- ( ph -> { 0 } C_ CC ) |
| 12 |
9 11
|
unssd |
|- ( ph -> ( S u. { 0 } ) C_ CC ) |
| 13 |
|
cnex |
|- CC e. _V |
| 14 |
|
ssexg |
|- ( ( ( S u. { 0 } ) C_ CC /\ CC e. _V ) -> ( S u. { 0 } ) e. _V ) |
| 15 |
12 13 14
|
sylancl |
|- ( ph -> ( S u. { 0 } ) e. _V ) |
| 16 |
|
nn0ex |
|- NN0 e. _V |
| 17 |
|
elmapg |
|- ( ( ( S u. { 0 } ) e. _V /\ NN0 e. _V ) -> ( B e. ( ( S u. { 0 } ) ^m NN0 ) <-> B : NN0 --> ( S u. { 0 } ) ) ) |
| 18 |
15 16 17
|
sylancl |
|- ( ph -> ( B e. ( ( S u. { 0 } ) ^m NN0 ) <-> B : NN0 --> ( S u. { 0 } ) ) ) |
| 19 |
5 18
|
mpbid |
|- ( ph -> B : NN0 --> ( S u. { 0 } ) ) |
| 20 |
19 12
|
fssd |
|- ( ph -> B : NN0 --> CC ) |
| 21 |
3 4 20 6 7
|
coeeq |
|- ( ph -> ( coeff ` F ) = B ) |
| 22 |
1 21
|
eqtr2id |
|- ( ph -> B = A ) |
| 23 |
22
|
adantr |
|- ( ( ph /\ z e. CC ) -> B = A ) |
| 24 |
|
fveq1 |
|- ( B = A -> ( B ` k ) = ( A ` k ) ) |
| 25 |
24
|
oveq1d |
|- ( B = A -> ( ( B ` k ) x. ( z ^ k ) ) = ( ( A ` k ) x. ( z ^ k ) ) ) |
| 26 |
25
|
sumeq2sdv |
|- ( B = A -> sum_ k e. ( 0 ... M ) ( ( B ` k ) x. ( z ^ k ) ) = sum_ k e. ( 0 ... M ) ( ( A ` k ) x. ( z ^ k ) ) ) |
| 27 |
23 26
|
syl |
|- ( ( ph /\ z e. CC ) -> sum_ k e. ( 0 ... M ) ( ( B ` k ) x. ( z ^ k ) ) = sum_ k e. ( 0 ... M ) ( ( A ` k ) x. ( z ^ k ) ) ) |
| 28 |
3
|
adantr |
|- ( ( ph /\ z e. CC ) -> F e. ( Poly ` S ) ) |
| 29 |
|
dgrcl |
|- ( F e. ( Poly ` S ) -> ( deg ` F ) e. NN0 ) |
| 30 |
2 29
|
eqeltrid |
|- ( F e. ( Poly ` S ) -> N e. NN0 ) |
| 31 |
28 30
|
syl |
|- ( ( ph /\ z e. CC ) -> N e. NN0 ) |
| 32 |
31
|
nn0zd |
|- ( ( ph /\ z e. CC ) -> N e. ZZ ) |
| 33 |
4
|
adantr |
|- ( ( ph /\ z e. CC ) -> M e. NN0 ) |
| 34 |
33
|
nn0zd |
|- ( ( ph /\ z e. CC ) -> M e. ZZ ) |
| 35 |
23
|
imaeq1d |
|- ( ( ph /\ z e. CC ) -> ( B " ( ZZ>= ` ( M + 1 ) ) ) = ( A " ( ZZ>= ` ( M + 1 ) ) ) ) |
| 36 |
6
|
adantr |
|- ( ( ph /\ z e. CC ) -> ( B " ( ZZ>= ` ( M + 1 ) ) ) = { 0 } ) |
| 37 |
35 36
|
eqtr3d |
|- ( ( ph /\ z e. CC ) -> ( A " ( ZZ>= ` ( M + 1 ) ) ) = { 0 } ) |
| 38 |
1 2
|
dgrlb |
|- ( ( F e. ( Poly ` S ) /\ M e. NN0 /\ ( A " ( ZZ>= ` ( M + 1 ) ) ) = { 0 } ) -> N <_ M ) |
| 39 |
28 33 37 38
|
syl3anc |
|- ( ( ph /\ z e. CC ) -> N <_ M ) |
| 40 |
|
eluz2 |
|- ( M e. ( ZZ>= ` N ) <-> ( N e. ZZ /\ M e. ZZ /\ N <_ M ) ) |
| 41 |
32 34 39 40
|
syl3anbrc |
|- ( ( ph /\ z e. CC ) -> M e. ( ZZ>= ` N ) ) |
| 42 |
|
fzss2 |
|- ( M e. ( ZZ>= ` N ) -> ( 0 ... N ) C_ ( 0 ... M ) ) |
| 43 |
41 42
|
syl |
|- ( ( ph /\ z e. CC ) -> ( 0 ... N ) C_ ( 0 ... M ) ) |
| 44 |
|
elfznn0 |
|- ( k e. ( 0 ... N ) -> k e. NN0 ) |
| 45 |
|
plyssc |
|- ( Poly ` S ) C_ ( Poly ` CC ) |
| 46 |
45 3
|
sselid |
|- ( ph -> F e. ( Poly ` CC ) ) |
| 47 |
1
|
coef3 |
|- ( F e. ( Poly ` CC ) -> A : NN0 --> CC ) |
| 48 |
46 47
|
syl |
|- ( ph -> A : NN0 --> CC ) |
| 49 |
48
|
adantr |
|- ( ( ph /\ z e. CC ) -> A : NN0 --> CC ) |
| 50 |
49
|
ffvelcdmda |
|- ( ( ( ph /\ z e. CC ) /\ k e. NN0 ) -> ( A ` k ) e. CC ) |
| 51 |
|
expcl |
|- ( ( z e. CC /\ k e. NN0 ) -> ( z ^ k ) e. CC ) |
| 52 |
51
|
adantll |
|- ( ( ( ph /\ z e. CC ) /\ k e. NN0 ) -> ( z ^ k ) e. CC ) |
| 53 |
50 52
|
mulcld |
|- ( ( ( ph /\ z e. CC ) /\ k e. NN0 ) -> ( ( A ` k ) x. ( z ^ k ) ) e. CC ) |
| 54 |
44 53
|
sylan2 |
|- ( ( ( ph /\ z e. CC ) /\ k e. ( 0 ... N ) ) -> ( ( A ` k ) x. ( z ^ k ) ) e. CC ) |
| 55 |
|
eldifn |
|- ( k e. ( ( 0 ... M ) \ ( 0 ... N ) ) -> -. k e. ( 0 ... N ) ) |
| 56 |
55
|
adantl |
|- ( ( ( ph /\ z e. CC ) /\ k e. ( ( 0 ... M ) \ ( 0 ... N ) ) ) -> -. k e. ( 0 ... N ) ) |
| 57 |
|
eldifi |
|- ( k e. ( ( 0 ... M ) \ ( 0 ... N ) ) -> k e. ( 0 ... M ) ) |
| 58 |
|
elfznn0 |
|- ( k e. ( 0 ... M ) -> k e. NN0 ) |
| 59 |
57 58
|
syl |
|- ( k e. ( ( 0 ... M ) \ ( 0 ... N ) ) -> k e. NN0 ) |
| 60 |
1 2
|
dgrub |
|- ( ( F e. ( Poly ` S ) /\ k e. NN0 /\ ( A ` k ) =/= 0 ) -> k <_ N ) |
| 61 |
60
|
3expia |
|- ( ( F e. ( Poly ` S ) /\ k e. NN0 ) -> ( ( A ` k ) =/= 0 -> k <_ N ) ) |
| 62 |
28 59 61
|
syl2an |
|- ( ( ( ph /\ z e. CC ) /\ k e. ( ( 0 ... M ) \ ( 0 ... N ) ) ) -> ( ( A ` k ) =/= 0 -> k <_ N ) ) |
| 63 |
|
elfzuz |
|- ( k e. ( 0 ... M ) -> k e. ( ZZ>= ` 0 ) ) |
| 64 |
57 63
|
syl |
|- ( k e. ( ( 0 ... M ) \ ( 0 ... N ) ) -> k e. ( ZZ>= ` 0 ) ) |
| 65 |
|
elfz5 |
|- ( ( k e. ( ZZ>= ` 0 ) /\ N e. ZZ ) -> ( k e. ( 0 ... N ) <-> k <_ N ) ) |
| 66 |
64 32 65
|
syl2anr |
|- ( ( ( ph /\ z e. CC ) /\ k e. ( ( 0 ... M ) \ ( 0 ... N ) ) ) -> ( k e. ( 0 ... N ) <-> k <_ N ) ) |
| 67 |
62 66
|
sylibrd |
|- ( ( ( ph /\ z e. CC ) /\ k e. ( ( 0 ... M ) \ ( 0 ... N ) ) ) -> ( ( A ` k ) =/= 0 -> k e. ( 0 ... N ) ) ) |
| 68 |
67
|
necon1bd |
|- ( ( ( ph /\ z e. CC ) /\ k e. ( ( 0 ... M ) \ ( 0 ... N ) ) ) -> ( -. k e. ( 0 ... N ) -> ( A ` k ) = 0 ) ) |
| 69 |
56 68
|
mpd |
|- ( ( ( ph /\ z e. CC ) /\ k e. ( ( 0 ... M ) \ ( 0 ... N ) ) ) -> ( A ` k ) = 0 ) |
| 70 |
69
|
oveq1d |
|- ( ( ( ph /\ z e. CC ) /\ k e. ( ( 0 ... M ) \ ( 0 ... N ) ) ) -> ( ( A ` k ) x. ( z ^ k ) ) = ( 0 x. ( z ^ k ) ) ) |
| 71 |
|
simpr |
|- ( ( ph /\ z e. CC ) -> z e. CC ) |
| 72 |
71 59 51
|
syl2an |
|- ( ( ( ph /\ z e. CC ) /\ k e. ( ( 0 ... M ) \ ( 0 ... N ) ) ) -> ( z ^ k ) e. CC ) |
| 73 |
72
|
mul02d |
|- ( ( ( ph /\ z e. CC ) /\ k e. ( ( 0 ... M ) \ ( 0 ... N ) ) ) -> ( 0 x. ( z ^ k ) ) = 0 ) |
| 74 |
70 73
|
eqtrd |
|- ( ( ( ph /\ z e. CC ) /\ k e. ( ( 0 ... M ) \ ( 0 ... N ) ) ) -> ( ( A ` k ) x. ( z ^ k ) ) = 0 ) |
| 75 |
|
fzfid |
|- ( ( ph /\ z e. CC ) -> ( 0 ... M ) e. Fin ) |
| 76 |
43 54 74 75
|
fsumss |
|- ( ( ph /\ z e. CC ) -> sum_ k e. ( 0 ... N ) ( ( A ` k ) x. ( z ^ k ) ) = sum_ k e. ( 0 ... M ) ( ( A ` k ) x. ( z ^ k ) ) ) |
| 77 |
27 76
|
eqtr4d |
|- ( ( ph /\ z e. CC ) -> sum_ k e. ( 0 ... M ) ( ( B ` k ) x. ( z ^ k ) ) = sum_ k e. ( 0 ... N ) ( ( A ` k ) x. ( z ^ k ) ) ) |
| 78 |
77
|
mpteq2dva |
|- ( ph -> ( z e. CC |-> sum_ k e. ( 0 ... M ) ( ( B ` k ) x. ( z ^ k ) ) ) = ( z e. CC |-> sum_ k e. ( 0 ... N ) ( ( A ` k ) x. ( z ^ k ) ) ) ) |
| 79 |
7 78
|
eqtrd |
|- ( ph -> F = ( z e. CC |-> sum_ k e. ( 0 ... N ) ( ( A ` k ) x. ( z ^ k ) ) ) ) |