Metamath Proof Explorer


Theorem dgrcl

Description: The degree of any polynomial is a nonnegative integer. (Contributed by Mario Carneiro, 22-Jul-2014)

Ref Expression
Assertion dgrcl
|- ( F e. ( Poly ` S ) -> ( deg ` F ) e. NN0 )

Proof

Step Hyp Ref Expression
1 eqid
 |-  ( coeff ` F ) = ( coeff ` F )
2 1 dgrval
 |-  ( F e. ( Poly ` S ) -> ( deg ` F ) = sup ( ( `' ( coeff ` F ) " ( CC \ { 0 } ) ) , NN0 , < ) )
3 nn0ssre
 |-  NN0 C_ RR
4 ltso
 |-  < Or RR
5 soss
 |-  ( NN0 C_ RR -> ( < Or RR -> < Or NN0 ) )
6 3 4 5 mp2
 |-  < Or NN0
7 6 a1i
 |-  ( F e. ( Poly ` S ) -> < Or NN0 )
8 0zd
 |-  ( F e. ( Poly ` S ) -> 0 e. ZZ )
9 cnvimass
 |-  ( `' ( coeff ` F ) " ( CC \ { 0 } ) ) C_ dom ( coeff ` F )
10 1 coef
 |-  ( F e. ( Poly ` S ) -> ( coeff ` F ) : NN0 --> ( S u. { 0 } ) )
11 9 10 fssdm
 |-  ( F e. ( Poly ` S ) -> ( `' ( coeff ` F ) " ( CC \ { 0 } ) ) C_ NN0 )
12 1 dgrlem
 |-  ( F e. ( Poly ` S ) -> ( ( coeff ` F ) : NN0 --> ( S u. { 0 } ) /\ E. n e. ZZ A. x e. ( `' ( coeff ` F ) " ( CC \ { 0 } ) ) x <_ n ) )
13 12 simprd
 |-  ( F e. ( Poly ` S ) -> E. n e. ZZ A. x e. ( `' ( coeff ` F ) " ( CC \ { 0 } ) ) x <_ n )
14 nn0uz
 |-  NN0 = ( ZZ>= ` 0 )
15 14 uzsupss
 |-  ( ( 0 e. ZZ /\ ( `' ( coeff ` F ) " ( CC \ { 0 } ) ) C_ NN0 /\ E. n e. ZZ A. x e. ( `' ( coeff ` F ) " ( CC \ { 0 } ) ) x <_ n ) -> E. n e. NN0 ( A. x e. ( `' ( coeff ` F ) " ( CC \ { 0 } ) ) -. n < x /\ A. x e. NN0 ( x < n -> E. y e. ( `' ( coeff ` F ) " ( CC \ { 0 } ) ) x < y ) ) )
16 8 11 13 15 syl3anc
 |-  ( F e. ( Poly ` S ) -> E. n e. NN0 ( A. x e. ( `' ( coeff ` F ) " ( CC \ { 0 } ) ) -. n < x /\ A. x e. NN0 ( x < n -> E. y e. ( `' ( coeff ` F ) " ( CC \ { 0 } ) ) x < y ) ) )
17 7 16 supcl
 |-  ( F e. ( Poly ` S ) -> sup ( ( `' ( coeff ` F ) " ( CC \ { 0 } ) ) , NN0 , < ) e. NN0 )
18 2 17 eqeltrd
 |-  ( F e. ( Poly ` S ) -> ( deg ` F ) e. NN0 )