| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0ss |
|- (/) C_ ( Poly ` CC ) |
| 2 |
|
sseq1 |
|- ( ( Poly ` S ) = (/) -> ( ( Poly ` S ) C_ ( Poly ` CC ) <-> (/) C_ ( Poly ` CC ) ) ) |
| 3 |
1 2
|
mpbiri |
|- ( ( Poly ` S ) = (/) -> ( Poly ` S ) C_ ( Poly ` CC ) ) |
| 4 |
|
n0 |
|- ( ( Poly ` S ) =/= (/) <-> E. f f e. ( Poly ` S ) ) |
| 5 |
|
plybss |
|- ( f e. ( Poly ` S ) -> S C_ CC ) |
| 6 |
|
ssid |
|- CC C_ CC |
| 7 |
|
plyss |
|- ( ( S C_ CC /\ CC C_ CC ) -> ( Poly ` S ) C_ ( Poly ` CC ) ) |
| 8 |
5 6 7
|
sylancl |
|- ( f e. ( Poly ` S ) -> ( Poly ` S ) C_ ( Poly ` CC ) ) |
| 9 |
8
|
exlimiv |
|- ( E. f f e. ( Poly ` S ) -> ( Poly ` S ) C_ ( Poly ` CC ) ) |
| 10 |
4 9
|
sylbi |
|- ( ( Poly ` S ) =/= (/) -> ( Poly ` S ) C_ ( Poly ` CC ) ) |
| 11 |
3 10
|
pm2.61ine |
|- ( Poly ` S ) C_ ( Poly ` CC ) |