Metamath Proof Explorer


Theorem plyssc

Description: Every polynomial ring is contained in the ring of polynomials over CC . (Contributed by Mario Carneiro, 22-Jul-2014)

Ref Expression
Assertion plyssc PolySPoly

Proof

Step Hyp Ref Expression
1 0ss Poly
2 sseq1 PolyS=PolySPolyPoly
3 1 2 mpbiri PolyS=PolySPoly
4 n0 PolySffPolyS
5 plybss fPolySS
6 ssid
7 plyss SPolySPoly
8 5 6 7 sylancl fPolySPolySPoly
9 8 exlimiv ffPolySPolySPoly
10 4 9 sylbi PolySPolySPoly
11 3 10 pm2.61ine PolySPoly