| Step |
Hyp |
Ref |
Expression |
| 1 |
|
coefv0.1 |
|
| 2 |
|
0cn |
|
| 3 |
|
eqid |
|
| 4 |
1 3
|
coeid2 |
|
| 5 |
2 4
|
mpan2 |
|
| 6 |
|
dgrcl |
|
| 7 |
|
nn0uz |
|
| 8 |
6 7
|
eleqtrdi |
|
| 9 |
|
fzss2 |
|
| 10 |
8 9
|
syl |
|
| 11 |
|
elfz1eq |
|
| 12 |
|
fveq2 |
|
| 13 |
|
oveq2 |
|
| 14 |
|
0exp0e1 |
|
| 15 |
13 14
|
eqtrdi |
|
| 16 |
12 15
|
oveq12d |
|
| 17 |
11 16
|
syl |
|
| 18 |
1
|
coef3 |
|
| 19 |
|
0nn0 |
|
| 20 |
|
ffvelcdm |
|
| 21 |
18 19 20
|
sylancl |
|
| 22 |
21
|
mulridd |
|
| 23 |
17 22
|
sylan9eqr |
|
| 24 |
21
|
adantr |
|
| 25 |
23 24
|
eqeltrd |
|
| 26 |
|
eldifn |
|
| 27 |
|
eldifi |
|
| 28 |
|
elfznn0 |
|
| 29 |
27 28
|
syl |
|
| 30 |
|
elnn0 |
|
| 31 |
29 30
|
sylib |
|
| 32 |
31
|
ord |
|
| 33 |
|
id |
|
| 34 |
|
0z |
|
| 35 |
|
elfz3 |
|
| 36 |
34 35
|
ax-mp |
|
| 37 |
33 36
|
eqeltrdi |
|
| 38 |
32 37
|
syl6 |
|
| 39 |
26 38
|
mt3d |
|
| 40 |
39
|
adantl |
|
| 41 |
40
|
0expd |
|
| 42 |
41
|
oveq2d |
|
| 43 |
|
ffvelcdm |
|
| 44 |
18 29 43
|
syl2an |
|
| 45 |
44
|
mul01d |
|
| 46 |
42 45
|
eqtrd |
|
| 47 |
|
fzfid |
|
| 48 |
10 25 46 47
|
fsumss |
|
| 49 |
22 21
|
eqeltrd |
|
| 50 |
16
|
fsum1 |
|
| 51 |
34 49 50
|
sylancr |
|
| 52 |
51 22
|
eqtrd |
|
| 53 |
5 48 52
|
3eqtr2d |
|