Step |
Hyp |
Ref |
Expression |
1 |
|
coefv0.1 |
⊢ 𝐴 = ( coeff ‘ 𝐹 ) |
2 |
|
0cn |
⊢ 0 ∈ ℂ |
3 |
|
eqid |
⊢ ( deg ‘ 𝐹 ) = ( deg ‘ 𝐹 ) |
4 |
1 3
|
coeid2 |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 0 ∈ ℂ ) → ( 𝐹 ‘ 0 ) = Σ 𝑘 ∈ ( 0 ... ( deg ‘ 𝐹 ) ) ( ( 𝐴 ‘ 𝑘 ) · ( 0 ↑ 𝑘 ) ) ) |
5 |
2 4
|
mpan2 |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → ( 𝐹 ‘ 0 ) = Σ 𝑘 ∈ ( 0 ... ( deg ‘ 𝐹 ) ) ( ( 𝐴 ‘ 𝑘 ) · ( 0 ↑ 𝑘 ) ) ) |
6 |
|
dgrcl |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → ( deg ‘ 𝐹 ) ∈ ℕ0 ) |
7 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
8 |
6 7
|
eleqtrdi |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → ( deg ‘ 𝐹 ) ∈ ( ℤ≥ ‘ 0 ) ) |
9 |
|
fzss2 |
⊢ ( ( deg ‘ 𝐹 ) ∈ ( ℤ≥ ‘ 0 ) → ( 0 ... 0 ) ⊆ ( 0 ... ( deg ‘ 𝐹 ) ) ) |
10 |
8 9
|
syl |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → ( 0 ... 0 ) ⊆ ( 0 ... ( deg ‘ 𝐹 ) ) ) |
11 |
|
elfz1eq |
⊢ ( 𝑘 ∈ ( 0 ... 0 ) → 𝑘 = 0 ) |
12 |
|
fveq2 |
⊢ ( 𝑘 = 0 → ( 𝐴 ‘ 𝑘 ) = ( 𝐴 ‘ 0 ) ) |
13 |
|
oveq2 |
⊢ ( 𝑘 = 0 → ( 0 ↑ 𝑘 ) = ( 0 ↑ 0 ) ) |
14 |
|
0exp0e1 |
⊢ ( 0 ↑ 0 ) = 1 |
15 |
13 14
|
eqtrdi |
⊢ ( 𝑘 = 0 → ( 0 ↑ 𝑘 ) = 1 ) |
16 |
12 15
|
oveq12d |
⊢ ( 𝑘 = 0 → ( ( 𝐴 ‘ 𝑘 ) · ( 0 ↑ 𝑘 ) ) = ( ( 𝐴 ‘ 0 ) · 1 ) ) |
17 |
11 16
|
syl |
⊢ ( 𝑘 ∈ ( 0 ... 0 ) → ( ( 𝐴 ‘ 𝑘 ) · ( 0 ↑ 𝑘 ) ) = ( ( 𝐴 ‘ 0 ) · 1 ) ) |
18 |
1
|
coef3 |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → 𝐴 : ℕ0 ⟶ ℂ ) |
19 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
20 |
|
ffvelrn |
⊢ ( ( 𝐴 : ℕ0 ⟶ ℂ ∧ 0 ∈ ℕ0 ) → ( 𝐴 ‘ 0 ) ∈ ℂ ) |
21 |
18 19 20
|
sylancl |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → ( 𝐴 ‘ 0 ) ∈ ℂ ) |
22 |
21
|
mulid1d |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → ( ( 𝐴 ‘ 0 ) · 1 ) = ( 𝐴 ‘ 0 ) ) |
23 |
17 22
|
sylan9eqr |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑘 ∈ ( 0 ... 0 ) ) → ( ( 𝐴 ‘ 𝑘 ) · ( 0 ↑ 𝑘 ) ) = ( 𝐴 ‘ 0 ) ) |
24 |
21
|
adantr |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑘 ∈ ( 0 ... 0 ) ) → ( 𝐴 ‘ 0 ) ∈ ℂ ) |
25 |
23 24
|
eqeltrd |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑘 ∈ ( 0 ... 0 ) ) → ( ( 𝐴 ‘ 𝑘 ) · ( 0 ↑ 𝑘 ) ) ∈ ℂ ) |
26 |
|
eldifn |
⊢ ( 𝑘 ∈ ( ( 0 ... ( deg ‘ 𝐹 ) ) ∖ ( 0 ... 0 ) ) → ¬ 𝑘 ∈ ( 0 ... 0 ) ) |
27 |
|
eldifi |
⊢ ( 𝑘 ∈ ( ( 0 ... ( deg ‘ 𝐹 ) ) ∖ ( 0 ... 0 ) ) → 𝑘 ∈ ( 0 ... ( deg ‘ 𝐹 ) ) ) |
28 |
|
elfznn0 |
⊢ ( 𝑘 ∈ ( 0 ... ( deg ‘ 𝐹 ) ) → 𝑘 ∈ ℕ0 ) |
29 |
27 28
|
syl |
⊢ ( 𝑘 ∈ ( ( 0 ... ( deg ‘ 𝐹 ) ) ∖ ( 0 ... 0 ) ) → 𝑘 ∈ ℕ0 ) |
30 |
|
elnn0 |
⊢ ( 𝑘 ∈ ℕ0 ↔ ( 𝑘 ∈ ℕ ∨ 𝑘 = 0 ) ) |
31 |
29 30
|
sylib |
⊢ ( 𝑘 ∈ ( ( 0 ... ( deg ‘ 𝐹 ) ) ∖ ( 0 ... 0 ) ) → ( 𝑘 ∈ ℕ ∨ 𝑘 = 0 ) ) |
32 |
31
|
ord |
⊢ ( 𝑘 ∈ ( ( 0 ... ( deg ‘ 𝐹 ) ) ∖ ( 0 ... 0 ) ) → ( ¬ 𝑘 ∈ ℕ → 𝑘 = 0 ) ) |
33 |
|
id |
⊢ ( 𝑘 = 0 → 𝑘 = 0 ) |
34 |
|
0z |
⊢ 0 ∈ ℤ |
35 |
|
elfz3 |
⊢ ( 0 ∈ ℤ → 0 ∈ ( 0 ... 0 ) ) |
36 |
34 35
|
ax-mp |
⊢ 0 ∈ ( 0 ... 0 ) |
37 |
33 36
|
eqeltrdi |
⊢ ( 𝑘 = 0 → 𝑘 ∈ ( 0 ... 0 ) ) |
38 |
32 37
|
syl6 |
⊢ ( 𝑘 ∈ ( ( 0 ... ( deg ‘ 𝐹 ) ) ∖ ( 0 ... 0 ) ) → ( ¬ 𝑘 ∈ ℕ → 𝑘 ∈ ( 0 ... 0 ) ) ) |
39 |
26 38
|
mt3d |
⊢ ( 𝑘 ∈ ( ( 0 ... ( deg ‘ 𝐹 ) ) ∖ ( 0 ... 0 ) ) → 𝑘 ∈ ℕ ) |
40 |
39
|
adantl |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑘 ∈ ( ( 0 ... ( deg ‘ 𝐹 ) ) ∖ ( 0 ... 0 ) ) ) → 𝑘 ∈ ℕ ) |
41 |
40
|
0expd |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑘 ∈ ( ( 0 ... ( deg ‘ 𝐹 ) ) ∖ ( 0 ... 0 ) ) ) → ( 0 ↑ 𝑘 ) = 0 ) |
42 |
41
|
oveq2d |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑘 ∈ ( ( 0 ... ( deg ‘ 𝐹 ) ) ∖ ( 0 ... 0 ) ) ) → ( ( 𝐴 ‘ 𝑘 ) · ( 0 ↑ 𝑘 ) ) = ( ( 𝐴 ‘ 𝑘 ) · 0 ) ) |
43 |
|
ffvelrn |
⊢ ( ( 𝐴 : ℕ0 ⟶ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ‘ 𝑘 ) ∈ ℂ ) |
44 |
18 29 43
|
syl2an |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑘 ∈ ( ( 0 ... ( deg ‘ 𝐹 ) ) ∖ ( 0 ... 0 ) ) ) → ( 𝐴 ‘ 𝑘 ) ∈ ℂ ) |
45 |
44
|
mul01d |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑘 ∈ ( ( 0 ... ( deg ‘ 𝐹 ) ) ∖ ( 0 ... 0 ) ) ) → ( ( 𝐴 ‘ 𝑘 ) · 0 ) = 0 ) |
46 |
42 45
|
eqtrd |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑘 ∈ ( ( 0 ... ( deg ‘ 𝐹 ) ) ∖ ( 0 ... 0 ) ) ) → ( ( 𝐴 ‘ 𝑘 ) · ( 0 ↑ 𝑘 ) ) = 0 ) |
47 |
|
fzfid |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → ( 0 ... ( deg ‘ 𝐹 ) ) ∈ Fin ) |
48 |
10 25 46 47
|
fsumss |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → Σ 𝑘 ∈ ( 0 ... 0 ) ( ( 𝐴 ‘ 𝑘 ) · ( 0 ↑ 𝑘 ) ) = Σ 𝑘 ∈ ( 0 ... ( deg ‘ 𝐹 ) ) ( ( 𝐴 ‘ 𝑘 ) · ( 0 ↑ 𝑘 ) ) ) |
49 |
22 21
|
eqeltrd |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → ( ( 𝐴 ‘ 0 ) · 1 ) ∈ ℂ ) |
50 |
16
|
fsum1 |
⊢ ( ( 0 ∈ ℤ ∧ ( ( 𝐴 ‘ 0 ) · 1 ) ∈ ℂ ) → Σ 𝑘 ∈ ( 0 ... 0 ) ( ( 𝐴 ‘ 𝑘 ) · ( 0 ↑ 𝑘 ) ) = ( ( 𝐴 ‘ 0 ) · 1 ) ) |
51 |
34 49 50
|
sylancr |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → Σ 𝑘 ∈ ( 0 ... 0 ) ( ( 𝐴 ‘ 𝑘 ) · ( 0 ↑ 𝑘 ) ) = ( ( 𝐴 ‘ 0 ) · 1 ) ) |
52 |
51 22
|
eqtrd |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → Σ 𝑘 ∈ ( 0 ... 0 ) ( ( 𝐴 ‘ 𝑘 ) · ( 0 ↑ 𝑘 ) ) = ( 𝐴 ‘ 0 ) ) |
53 |
5 48 52
|
3eqtr2d |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → ( 𝐹 ‘ 0 ) = ( 𝐴 ‘ 0 ) ) |