Metamath Proof Explorer


Theorem coeid2

Description: Reconstruct a polynomial as an explicit sum of the coefficient function up to the degree of the polynomial. (Contributed by Mario Carneiro, 22-Jul-2014)

Ref Expression
Hypotheses dgrub.1 𝐴 = ( coeff ‘ 𝐹 )
dgrub.2 𝑁 = ( deg ‘ 𝐹 )
Assertion coeid2 ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑋 ∈ ℂ ) → ( 𝐹𝑋 ) = Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝐴𝑘 ) · ( 𝑋𝑘 ) ) )

Proof

Step Hyp Ref Expression
1 dgrub.1 𝐴 = ( coeff ‘ 𝐹 )
2 dgrub.2 𝑁 = ( deg ‘ 𝐹 )
3 1 2 coeid ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → 𝐹 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝐴𝑘 ) · ( 𝑧𝑘 ) ) ) )
4 3 fveq1d ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → ( 𝐹𝑋 ) = ( ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝐴𝑘 ) · ( 𝑧𝑘 ) ) ) ‘ 𝑋 ) )
5 oveq1 ( 𝑧 = 𝑋 → ( 𝑧𝑘 ) = ( 𝑋𝑘 ) )
6 5 oveq2d ( 𝑧 = 𝑋 → ( ( 𝐴𝑘 ) · ( 𝑧𝑘 ) ) = ( ( 𝐴𝑘 ) · ( 𝑋𝑘 ) ) )
7 6 sumeq2sdv ( 𝑧 = 𝑋 → Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝐴𝑘 ) · ( 𝑧𝑘 ) ) = Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝐴𝑘 ) · ( 𝑋𝑘 ) ) )
8 eqid ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝐴𝑘 ) · ( 𝑧𝑘 ) ) ) = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝐴𝑘 ) · ( 𝑧𝑘 ) ) )
9 sumex Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝐴𝑘 ) · ( 𝑋𝑘 ) ) ∈ V
10 7 8 9 fvmpt ( 𝑋 ∈ ℂ → ( ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝐴𝑘 ) · ( 𝑧𝑘 ) ) ) ‘ 𝑋 ) = Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝐴𝑘 ) · ( 𝑋𝑘 ) ) )
11 4 10 sylan9eq ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑋 ∈ ℂ ) → ( 𝐹𝑋 ) = Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝐴𝑘 ) · ( 𝑋𝑘 ) ) )