| Step |
Hyp |
Ref |
Expression |
| 1 |
|
coefv0.1 |
|- A = ( coeff ` F ) |
| 2 |
|
0cn |
|- 0 e. CC |
| 3 |
|
eqid |
|- ( deg ` F ) = ( deg ` F ) |
| 4 |
1 3
|
coeid2 |
|- ( ( F e. ( Poly ` S ) /\ 0 e. CC ) -> ( F ` 0 ) = sum_ k e. ( 0 ... ( deg ` F ) ) ( ( A ` k ) x. ( 0 ^ k ) ) ) |
| 5 |
2 4
|
mpan2 |
|- ( F e. ( Poly ` S ) -> ( F ` 0 ) = sum_ k e. ( 0 ... ( deg ` F ) ) ( ( A ` k ) x. ( 0 ^ k ) ) ) |
| 6 |
|
dgrcl |
|- ( F e. ( Poly ` S ) -> ( deg ` F ) e. NN0 ) |
| 7 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
| 8 |
6 7
|
eleqtrdi |
|- ( F e. ( Poly ` S ) -> ( deg ` F ) e. ( ZZ>= ` 0 ) ) |
| 9 |
|
fzss2 |
|- ( ( deg ` F ) e. ( ZZ>= ` 0 ) -> ( 0 ... 0 ) C_ ( 0 ... ( deg ` F ) ) ) |
| 10 |
8 9
|
syl |
|- ( F e. ( Poly ` S ) -> ( 0 ... 0 ) C_ ( 0 ... ( deg ` F ) ) ) |
| 11 |
|
elfz1eq |
|- ( k e. ( 0 ... 0 ) -> k = 0 ) |
| 12 |
|
fveq2 |
|- ( k = 0 -> ( A ` k ) = ( A ` 0 ) ) |
| 13 |
|
oveq2 |
|- ( k = 0 -> ( 0 ^ k ) = ( 0 ^ 0 ) ) |
| 14 |
|
0exp0e1 |
|- ( 0 ^ 0 ) = 1 |
| 15 |
13 14
|
eqtrdi |
|- ( k = 0 -> ( 0 ^ k ) = 1 ) |
| 16 |
12 15
|
oveq12d |
|- ( k = 0 -> ( ( A ` k ) x. ( 0 ^ k ) ) = ( ( A ` 0 ) x. 1 ) ) |
| 17 |
11 16
|
syl |
|- ( k e. ( 0 ... 0 ) -> ( ( A ` k ) x. ( 0 ^ k ) ) = ( ( A ` 0 ) x. 1 ) ) |
| 18 |
1
|
coef3 |
|- ( F e. ( Poly ` S ) -> A : NN0 --> CC ) |
| 19 |
|
0nn0 |
|- 0 e. NN0 |
| 20 |
|
ffvelcdm |
|- ( ( A : NN0 --> CC /\ 0 e. NN0 ) -> ( A ` 0 ) e. CC ) |
| 21 |
18 19 20
|
sylancl |
|- ( F e. ( Poly ` S ) -> ( A ` 0 ) e. CC ) |
| 22 |
21
|
mulridd |
|- ( F e. ( Poly ` S ) -> ( ( A ` 0 ) x. 1 ) = ( A ` 0 ) ) |
| 23 |
17 22
|
sylan9eqr |
|- ( ( F e. ( Poly ` S ) /\ k e. ( 0 ... 0 ) ) -> ( ( A ` k ) x. ( 0 ^ k ) ) = ( A ` 0 ) ) |
| 24 |
21
|
adantr |
|- ( ( F e. ( Poly ` S ) /\ k e. ( 0 ... 0 ) ) -> ( A ` 0 ) e. CC ) |
| 25 |
23 24
|
eqeltrd |
|- ( ( F e. ( Poly ` S ) /\ k e. ( 0 ... 0 ) ) -> ( ( A ` k ) x. ( 0 ^ k ) ) e. CC ) |
| 26 |
|
eldifn |
|- ( k e. ( ( 0 ... ( deg ` F ) ) \ ( 0 ... 0 ) ) -> -. k e. ( 0 ... 0 ) ) |
| 27 |
|
eldifi |
|- ( k e. ( ( 0 ... ( deg ` F ) ) \ ( 0 ... 0 ) ) -> k e. ( 0 ... ( deg ` F ) ) ) |
| 28 |
|
elfznn0 |
|- ( k e. ( 0 ... ( deg ` F ) ) -> k e. NN0 ) |
| 29 |
27 28
|
syl |
|- ( k e. ( ( 0 ... ( deg ` F ) ) \ ( 0 ... 0 ) ) -> k e. NN0 ) |
| 30 |
|
elnn0 |
|- ( k e. NN0 <-> ( k e. NN \/ k = 0 ) ) |
| 31 |
29 30
|
sylib |
|- ( k e. ( ( 0 ... ( deg ` F ) ) \ ( 0 ... 0 ) ) -> ( k e. NN \/ k = 0 ) ) |
| 32 |
31
|
ord |
|- ( k e. ( ( 0 ... ( deg ` F ) ) \ ( 0 ... 0 ) ) -> ( -. k e. NN -> k = 0 ) ) |
| 33 |
|
id |
|- ( k = 0 -> k = 0 ) |
| 34 |
|
0z |
|- 0 e. ZZ |
| 35 |
|
elfz3 |
|- ( 0 e. ZZ -> 0 e. ( 0 ... 0 ) ) |
| 36 |
34 35
|
ax-mp |
|- 0 e. ( 0 ... 0 ) |
| 37 |
33 36
|
eqeltrdi |
|- ( k = 0 -> k e. ( 0 ... 0 ) ) |
| 38 |
32 37
|
syl6 |
|- ( k e. ( ( 0 ... ( deg ` F ) ) \ ( 0 ... 0 ) ) -> ( -. k e. NN -> k e. ( 0 ... 0 ) ) ) |
| 39 |
26 38
|
mt3d |
|- ( k e. ( ( 0 ... ( deg ` F ) ) \ ( 0 ... 0 ) ) -> k e. NN ) |
| 40 |
39
|
adantl |
|- ( ( F e. ( Poly ` S ) /\ k e. ( ( 0 ... ( deg ` F ) ) \ ( 0 ... 0 ) ) ) -> k e. NN ) |
| 41 |
40
|
0expd |
|- ( ( F e. ( Poly ` S ) /\ k e. ( ( 0 ... ( deg ` F ) ) \ ( 0 ... 0 ) ) ) -> ( 0 ^ k ) = 0 ) |
| 42 |
41
|
oveq2d |
|- ( ( F e. ( Poly ` S ) /\ k e. ( ( 0 ... ( deg ` F ) ) \ ( 0 ... 0 ) ) ) -> ( ( A ` k ) x. ( 0 ^ k ) ) = ( ( A ` k ) x. 0 ) ) |
| 43 |
|
ffvelcdm |
|- ( ( A : NN0 --> CC /\ k e. NN0 ) -> ( A ` k ) e. CC ) |
| 44 |
18 29 43
|
syl2an |
|- ( ( F e. ( Poly ` S ) /\ k e. ( ( 0 ... ( deg ` F ) ) \ ( 0 ... 0 ) ) ) -> ( A ` k ) e. CC ) |
| 45 |
44
|
mul01d |
|- ( ( F e. ( Poly ` S ) /\ k e. ( ( 0 ... ( deg ` F ) ) \ ( 0 ... 0 ) ) ) -> ( ( A ` k ) x. 0 ) = 0 ) |
| 46 |
42 45
|
eqtrd |
|- ( ( F e. ( Poly ` S ) /\ k e. ( ( 0 ... ( deg ` F ) ) \ ( 0 ... 0 ) ) ) -> ( ( A ` k ) x. ( 0 ^ k ) ) = 0 ) |
| 47 |
|
fzfid |
|- ( F e. ( Poly ` S ) -> ( 0 ... ( deg ` F ) ) e. Fin ) |
| 48 |
10 25 46 47
|
fsumss |
|- ( F e. ( Poly ` S ) -> sum_ k e. ( 0 ... 0 ) ( ( A ` k ) x. ( 0 ^ k ) ) = sum_ k e. ( 0 ... ( deg ` F ) ) ( ( A ` k ) x. ( 0 ^ k ) ) ) |
| 49 |
22 21
|
eqeltrd |
|- ( F e. ( Poly ` S ) -> ( ( A ` 0 ) x. 1 ) e. CC ) |
| 50 |
16
|
fsum1 |
|- ( ( 0 e. ZZ /\ ( ( A ` 0 ) x. 1 ) e. CC ) -> sum_ k e. ( 0 ... 0 ) ( ( A ` k ) x. ( 0 ^ k ) ) = ( ( A ` 0 ) x. 1 ) ) |
| 51 |
34 49 50
|
sylancr |
|- ( F e. ( Poly ` S ) -> sum_ k e. ( 0 ... 0 ) ( ( A ` k ) x. ( 0 ^ k ) ) = ( ( A ` 0 ) x. 1 ) ) |
| 52 |
51 22
|
eqtrd |
|- ( F e. ( Poly ` S ) -> sum_ k e. ( 0 ... 0 ) ( ( A ` k ) x. ( 0 ^ k ) ) = ( A ` 0 ) ) |
| 53 |
5 48 52
|
3eqtr2d |
|- ( F e. ( Poly ` S ) -> ( F ` 0 ) = ( A ` 0 ) ) |