| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cmu |
|- mmu |
| 1 |
|
vx |
|- x |
| 2 |
|
cn |
|- NN |
| 3 |
|
vp |
|- p |
| 4 |
|
cprime |
|- Prime |
| 5 |
3
|
cv |
|- p |
| 6 |
|
cexp |
|- ^ |
| 7 |
|
c2 |
|- 2 |
| 8 |
5 7 6
|
co |
|- ( p ^ 2 ) |
| 9 |
|
cdvds |
|- || |
| 10 |
1
|
cv |
|- x |
| 11 |
8 10 9
|
wbr |
|- ( p ^ 2 ) || x |
| 12 |
11 3 4
|
wrex |
|- E. p e. Prime ( p ^ 2 ) || x |
| 13 |
|
cc0 |
|- 0 |
| 14 |
|
c1 |
|- 1 |
| 15 |
14
|
cneg |
|- -u 1 |
| 16 |
|
chash |
|- # |
| 17 |
5 10 9
|
wbr |
|- p || x |
| 18 |
17 3 4
|
crab |
|- { p e. Prime | p || x } |
| 19 |
18 16
|
cfv |
|- ( # ` { p e. Prime | p || x } ) |
| 20 |
15 19 6
|
co |
|- ( -u 1 ^ ( # ` { p e. Prime | p || x } ) ) |
| 21 |
12 13 20
|
cif |
|- if ( E. p e. Prime ( p ^ 2 ) || x , 0 , ( -u 1 ^ ( # ` { p e. Prime | p || x } ) ) ) |
| 22 |
1 2 21
|
cmpt |
|- ( x e. NN |-> if ( E. p e. Prime ( p ^ 2 ) || x , 0 , ( -u 1 ^ ( # ` { p e. Prime | p || x } ) ) ) ) |
| 23 |
0 22
|
wceq |
|- mmu = ( x e. NN |-> if ( E. p e. Prime ( p ^ 2 ) || x , 0 , ( -u 1 ^ ( # ` { p e. Prime | p || x } ) ) ) ) |