Description: Define the set of variable typecodes in a Metamath formal system. (Contributed by Mario Carneiro, 14-Jul-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-mvt | |- mVT = ( t e. _V |-> ran ( mType ` t ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 0 | cmvt | |- mVT | |
| 1 | vt | |- t | |
| 2 | cvv | |- _V | |
| 3 | cmty | |- mType | |
| 4 | 1 | cv | |- t | 
| 5 | 4 3 | cfv | |- ( mType ` t ) | 
| 6 | 5 | crn | |- ran ( mType ` t ) | 
| 7 | 1 2 6 | cmpt | |- ( t e. _V |-> ran ( mType ` t ) ) | 
| 8 | 0 7 | wceq | |- mVT = ( t e. _V |-> ran ( mType ` t ) ) |