Metamath Proof Explorer


Definition df-mvt

Description: Define the set of variable typecodes in a Metamath formal system. (Contributed by Mario Carneiro, 14-Jul-2016)

Ref Expression
Assertion df-mvt mVT = ( 𝑡 ∈ V ↦ ran ( mType ‘ 𝑡 ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cmvt mVT
1 vt 𝑡
2 cvv V
3 cmty mType
4 1 cv 𝑡
5 4 3 cfv ( mType ‘ 𝑡 )
6 5 crn ran ( mType ‘ 𝑡 )
7 1 2 6 cmpt ( 𝑡 ∈ V ↦ ran ( mType ‘ 𝑡 ) )
8 0 7 wceq mVT = ( 𝑡 ∈ V ↦ ran ( mType ‘ 𝑡 ) )