Metamath Proof Explorer


Definition df-mrex

Description: Define the set of "raw expressions", which are expressions without a typecode attached. (Contributed by Mario Carneiro, 14-Jul-2016)

Ref Expression
Assertion df-mrex mREx = ( 𝑡 ∈ V ↦ Word ( ( mCN ‘ 𝑡 ) ∪ ( mVR ‘ 𝑡 ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cmrex mREx
1 vt 𝑡
2 cvv V
3 cmcn mCN
4 1 cv 𝑡
5 4 3 cfv ( mCN ‘ 𝑡 )
6 cmvar mVR
7 4 6 cfv ( mVR ‘ 𝑡 )
8 5 7 cun ( ( mCN ‘ 𝑡 ) ∪ ( mVR ‘ 𝑡 ) )
9 8 cword Word ( ( mCN ‘ 𝑡 ) ∪ ( mVR ‘ 𝑡 ) )
10 1 2 9 cmpt ( 𝑡 ∈ V ↦ Word ( ( mCN ‘ 𝑡 ) ∪ ( mVR ‘ 𝑡 ) ) )
11 0 10 wceq mREx = ( 𝑡 ∈ V ↦ Word ( ( mCN ‘ 𝑡 ) ∪ ( mVR ‘ 𝑡 ) ) )