Metamath Proof Explorer


Definition df-mrex

Description: Define the set of "raw expressions", which are expressions without a typecode attached. (Contributed by Mario Carneiro, 14-Jul-2016)

Ref Expression
Assertion df-mrex mREx = t V Word mCN t mVR t

Detailed syntax breakdown

Step Hyp Ref Expression
0 cmrex class mREx
1 vt setvar t
2 cvv class V
3 cmcn class mCN
4 1 cv setvar t
5 4 3 cfv class mCN t
6 cmvar class mVR
7 4 6 cfv class mVR t
8 5 7 cun class mCN t mVR t
9 8 cword class Word mCN t mVR t
10 1 2 9 cmpt class t V Word mCN t mVR t
11 0 10 wceq wff mREx = t V Word mCN t mVR t