Metamath Proof Explorer


Definition df-negs

Description: Define surreal negation. Definition from Conway p. 5. (Contributed by Scott Fenton, 20-Aug-2024)

Ref Expression
Assertion df-negs
|- -us = norec ( ( x e. _V , n e. _V |-> ( ( n " ( _R ` x ) ) |s ( n " ( _L ` x ) ) ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cnegs
 |-  -us
1 vx
 |-  x
2 cvv
 |-  _V
3 vn
 |-  n
4 3 cv
 |-  n
5 cright
 |-  _R
6 1 cv
 |-  x
7 6 5 cfv
 |-  ( _R ` x )
8 4 7 cima
 |-  ( n " ( _R ` x ) )
9 cscut
 |-  |s
10 cleft
 |-  _L
11 6 10 cfv
 |-  ( _L ` x )
12 4 11 cima
 |-  ( n " ( _L ` x ) )
13 8 12 9 co
 |-  ( ( n " ( _R ` x ) ) |s ( n " ( _L ` x ) ) )
14 1 3 2 2 13 cmpo
 |-  ( x e. _V , n e. _V |-> ( ( n " ( _R ` x ) ) |s ( n " ( _L ` x ) ) ) )
15 14 cnorec
 |-  norec ( ( x e. _V , n e. _V |-> ( ( n " ( _R ` x ) ) |s ( n " ( _L ` x ) ) ) ) )
16 0 15 wceq
 |-  -us = norec ( ( x e. _V , n e. _V |-> ( ( n " ( _R ` x ) ) |s ( n " ( _L ` x ) ) ) ) )