Description: Define surreal negation. Definition from Conway p. 5. (Contributed by Scott Fenton, 20-Aug-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | df-negs | |- -us = norec ( ( x e. _V , n e. _V |-> ( ( n " ( _R ` x ) ) |s ( n " ( _L ` x ) ) ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | cnegs | |- -us |
|
1 | vx | |- x |
|
2 | cvv | |- _V |
|
3 | vn | |- n |
|
4 | 3 | cv | |- n |
5 | cright | |- _R |
|
6 | 1 | cv | |- x |
7 | 6 5 | cfv | |- ( _R ` x ) |
8 | 4 7 | cima | |- ( n " ( _R ` x ) ) |
9 | cscut | |- |s |
|
10 | cleft | |- _L |
|
11 | 6 10 | cfv | |- ( _L ` x ) |
12 | 4 11 | cima | |- ( n " ( _L ` x ) ) |
13 | 8 12 9 | co | |- ( ( n " ( _R ` x ) ) |s ( n " ( _L ` x ) ) ) |
14 | 1 3 2 2 13 | cmpo | |- ( x e. _V , n e. _V |-> ( ( n " ( _R ` x ) ) |s ( n " ( _L ` x ) ) ) ) |
15 | 14 | cnorec | |- norec ( ( x e. _V , n e. _V |-> ( ( n " ( _R ` x ) ) |s ( n " ( _L ` x ) ) ) ) ) |
16 | 0 15 | wceq | |- -us = norec ( ( x e. _V , n e. _V |-> ( ( n " ( _R ` x ) ) |s ( n " ( _L ` x ) ) ) ) ) |