Metamath Proof Explorer


Definition df-negs

Description: Define surreal negation. Definition from Conway p. 5. (Contributed by Scott Fenton, 20-Aug-2024)

Ref Expression
Assertion df-negs -us = norec ( ( 𝑥 ∈ V , 𝑛 ∈ V ↦ ( ( 𝑛 “ ( R ‘ 𝑥 ) ) |s ( 𝑛 “ ( L ‘ 𝑥 ) ) ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cnegs -us
1 vx 𝑥
2 cvv V
3 vn 𝑛
4 3 cv 𝑛
5 cright R
6 1 cv 𝑥
7 6 5 cfv ( R ‘ 𝑥 )
8 4 7 cima ( 𝑛 “ ( R ‘ 𝑥 ) )
9 cscut |s
10 cleft L
11 6 10 cfv ( L ‘ 𝑥 )
12 4 11 cima ( 𝑛 “ ( L ‘ 𝑥 ) )
13 8 12 9 co ( ( 𝑛 “ ( R ‘ 𝑥 ) ) |s ( 𝑛 “ ( L ‘ 𝑥 ) ) )
14 1 3 2 2 13 cmpo ( 𝑥 ∈ V , 𝑛 ∈ V ↦ ( ( 𝑛 “ ( R ‘ 𝑥 ) ) |s ( 𝑛 “ ( L ‘ 𝑥 ) ) ) )
15 14 cnorec norec ( ( 𝑥 ∈ V , 𝑛 ∈ V ↦ ( ( 𝑛 “ ( R ‘ 𝑥 ) ) |s ( 𝑛 “ ( L ‘ 𝑥 ) ) ) ) )
16 0 15 wceq -us = norec ( ( 𝑥 ∈ V , 𝑛 ∈ V ↦ ( ( 𝑛 “ ( R ‘ 𝑥 ) ) |s ( 𝑛 “ ( L ‘ 𝑥 ) ) ) ) )