Description: Define surreal subtraction. (Contributed by Scott Fenton, 20-Aug-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-subs | ⊢ -s = ( 𝑥 ∈ No , 𝑦 ∈ No ↦ ( 𝑥 +s ( -us ‘ 𝑦 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | csubs | ⊢ -s | |
| 1 | vx | ⊢ 𝑥 | |
| 2 | csur | ⊢ No | |
| 3 | vy | ⊢ 𝑦 | |
| 4 | 1 | cv | ⊢ 𝑥 |
| 5 | cadds | ⊢ +s | |
| 6 | cnegs | ⊢ -us | |
| 7 | 3 | cv | ⊢ 𝑦 |
| 8 | 7 6 | cfv | ⊢ ( -us ‘ 𝑦 ) |
| 9 | 4 8 5 | co | ⊢ ( 𝑥 +s ( -us ‘ 𝑦 ) ) |
| 10 | 1 3 2 2 9 | cmpo | ⊢ ( 𝑥 ∈ No , 𝑦 ∈ No ↦ ( 𝑥 +s ( -us ‘ 𝑦 ) ) ) |
| 11 | 0 10 | wceq | ⊢ -s = ( 𝑥 ∈ No , 𝑦 ∈ No ↦ ( 𝑥 +s ( -us ‘ 𝑦 ) ) ) |