Metamath Proof Explorer


Definition df-subs

Description: Define surreal subtraction. (Contributed by Scott Fenton, 20-Aug-2024)

Ref Expression
Assertion df-subs -s = ( 𝑥 No , 𝑦 No ↦ ( 𝑥 +s ( -us ‘ 𝑦 ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 csubs -s
1 vx 𝑥
2 csur No
3 vy 𝑦
4 1 cv 𝑥
5 cadds +s
6 cnegs -us
7 3 cv 𝑦
8 7 6 cfv ( -us ‘ 𝑦 )
9 4 8 5 co ( 𝑥 +s ( -us ‘ 𝑦 ) )
10 1 3 2 2 9 cmpo ( 𝑥 No , 𝑦 No ↦ ( 𝑥 +s ( -us ‘ 𝑦 ) ) )
11 0 10 wceq -s = ( 𝑥 No , 𝑦 No ↦ ( 𝑥 +s ( -us ‘ 𝑦 ) ) )