Description: Define negated membership as binary relation. Analogous to df-eprel (the membership relation). (Contributed by AV, 26-Dec-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-nelbr | |- e// = { <. x , y >. | -. x e. y } | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 0 | cnelbr | |- e// | |
| 1 | vx | |- x | |
| 2 | vy | |- y | |
| 3 | 1 | cv | |- x | 
| 4 | 2 | cv | |- y | 
| 5 | 3 4 | wcel | |- x e. y | 
| 6 | 5 | wn | |- -. x e. y | 
| 7 | 6 1 2 | copab |  |-  { <. x , y >. | -. x e. y } | 
| 8 | 0 7 | wceq |  |-  e// = { <. x , y >. | -. x e. y } |