Metamath Proof Explorer


Definition df-nelbr

Description: Define negated membership as binary relation. Analogous to df-eprel (the membership relation). (Contributed by AV, 26-Dec-2021)

Ref Expression
Assertion df-nelbr _∉ = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ¬ 𝑥𝑦 }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cnelbr _∉
1 vx 𝑥
2 vy 𝑦
3 1 cv 𝑥
4 2 cv 𝑦
5 3 4 wcel 𝑥𝑦
6 5 wn ¬ 𝑥𝑦
7 6 1 2 copab { ⟨ 𝑥 , 𝑦 ⟩ ∣ ¬ 𝑥𝑦 }
8 0 7 wceq _∉ = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ¬ 𝑥𝑦 }