Metamath Proof Explorer


Theorem dfnelbr2

Description: Alternate definition of the negated membership as binary relation. (Proposed by BJ, 27-Dec-2021.) (Contributed by AV, 27-Dec-2021)

Ref Expression
Assertion dfnelbr2 _∉ = ( ( V × V ) ∖ E )

Proof

Step Hyp Ref Expression
1 difopab ( { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ∈ V ∧ 𝑦 ∈ V ) } ∖ { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥𝑦 } ) = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥 ∈ V ∧ 𝑦 ∈ V ) ∧ ¬ 𝑥𝑦 ) }
2 df-xp ( V × V ) = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ∈ V ∧ 𝑦 ∈ V ) }
3 df-eprel E = { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥𝑦 }
4 2 3 difeq12i ( ( V × V ) ∖ E ) = ( { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ∈ V ∧ 𝑦 ∈ V ) } ∖ { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥𝑦 } )
5 df-nelbr _∉ = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ¬ 𝑥𝑦 }
6 vex 𝑥 ∈ V
7 vex 𝑦 ∈ V
8 6 7 pm3.2i ( 𝑥 ∈ V ∧ 𝑦 ∈ V )
9 8 biantrur ( ¬ 𝑥𝑦 ↔ ( ( 𝑥 ∈ V ∧ 𝑦 ∈ V ) ∧ ¬ 𝑥𝑦 ) )
10 9 opabbii { ⟨ 𝑥 , 𝑦 ⟩ ∣ ¬ 𝑥𝑦 } = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥 ∈ V ∧ 𝑦 ∈ V ) ∧ ¬ 𝑥𝑦 ) }
11 5 10 eqtri _∉ = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥 ∈ V ∧ 𝑦 ∈ V ) ∧ ¬ 𝑥𝑦 ) }
12 1 4 11 3eqtr4ri _∉ = ( ( V × V ) ∖ E )