Metamath Proof Explorer
		
		
		
		Description:  Equality inference for class difference.  (Contributed by NM, 29-Aug-2004)
		
			
				
					 | 
					 | 
					Ref | 
					Expression | 
				
					
						 | 
						Hypotheses | 
						difeq1i.1 | 
						⊢ 𝐴  =  𝐵  | 
					
					
						 | 
						 | 
						difeq12i.2 | 
						⊢ 𝐶  =  𝐷  | 
					
				
					 | 
					Assertion | 
					difeq12i | 
					⊢  ( 𝐴  ∖  𝐶 )  =  ( 𝐵  ∖  𝐷 )  | 
				
			
		
		
			
				Proof
				
					
						| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							difeq1i.1 | 
							⊢ 𝐴  =  𝐵  | 
						
						
							| 2 | 
							
								
							 | 
							difeq12i.2 | 
							⊢ 𝐶  =  𝐷  | 
						
						
							| 3 | 
							
								1
							 | 
							difeq1i | 
							⊢ ( 𝐴  ∖  𝐶 )  =  ( 𝐵  ∖  𝐶 )  | 
						
						
							| 4 | 
							
								2
							 | 
							difeq2i | 
							⊢ ( 𝐵  ∖  𝐶 )  =  ( 𝐵  ∖  𝐷 )  | 
						
						
							| 5 | 
							
								3 4
							 | 
							eqtri | 
							⊢ ( 𝐴  ∖  𝐶 )  =  ( 𝐵  ∖  𝐷 )  |