Metamath Proof Explorer
		
		
		
		Description:  Equality inference for class difference.  (Contributed by NM, 29-Aug-2004)
		
			
				
					 | 
					 | 
					Ref | 
					Expression | 
				
					
						 | 
						Hypotheses | 
						difeq1i.1 | 
						|- A = B  | 
					
					
						 | 
						 | 
						difeq12i.2 | 
						|- C = D  | 
					
				
					 | 
					Assertion | 
					difeq12i | 
					|- ( A \ C ) = ( B \ D )  | 
				
			
		
		
			
				Proof
				
					
						| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							difeq1i.1 | 
							 |-  A = B  | 
						
						
							| 2 | 
							
								
							 | 
							difeq12i.2 | 
							 |-  C = D  | 
						
						
							| 3 | 
							
								1
							 | 
							difeq1i | 
							 |-  ( A \ C ) = ( B \ C )  | 
						
						
							| 4 | 
							
								2
							 | 
							difeq2i | 
							 |-  ( B \ C ) = ( B \ D )  | 
						
						
							| 5 | 
							
								3 4
							 | 
							eqtri | 
							 |-  ( A \ C ) = ( B \ D )  |